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Motivations
The continuously decreasing feature sizes provides high speed 
and high density  but cause process variations
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Process Variations
Chemical-mechanical planarization

Chemical etching

Optical proximity effects



Sources of Variation
Essential source of variation are the device spatial 
parameters. 
We consider the transistor width Weff, length Leff and oxide 
thickness Tox
Global and local parameters related to spatial device 
characteristics affect the performance factors

*Figures are courtesy of IBM, Intel and TSMC

Example: Intra-die and Inter-die spatial correlation*



Statistical CAD tools
Nanometer process technology cause circuit 
performance to deviate from their designed values
In low cell level, output performance depends on 
both input and intrinsic uncertainties. 
The output performance deviation is approximated 
as polynomial with respect the variational sources 



Variational Analysis
Statistical static timing 
analysis

Propagate correlated 
normal distribution
A limited number of 
operators: sum and 
maximum

Statistical interconnect
timing analysis

Require a richer palette 
of computations
Not easy to represent 
statistics and push 
them through model 
reduction algorithms 
(Courtesy of Rutenbar)
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Performance based strategy

2 Order 22 Order 23 Order 2n Order 

Output Performance order 

{p1,p2} {p1,..,p4} {p1,..,p6} {p1,..,p2n}

We calculate cell level performance using  2nd order 
polynomial function.
Along each path/block, the performance measures  the 
variation impact of all traversed cells.
The output performance values is 2nd order polynomial with 
many  variables

–2nd Order estimation



The general regression model of the performance function:

We seek for reduction of the input space  in  compact 
form along with keeping the statistical properties of the output
One possible way is performing the Principle Component Analysis

Performance factor approximation
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Principle Component analysis
Most traditional approaches for dimension reduction 
rely on PCA.
The principle component is linear combination of all 
parameters corresponding to maximal resultant 
variance.

However an additional reduction can be achieved by 
considering the output  (performance) values
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PCA problems

Example1 : P1 and P3 are uncorrelated, P2=3P1
PCA returns 2 principle components
In fact the Output depends on one component

Eample 2:  g(x1, x2, x3, x4) and z(x1,x2,x3,x4), PCA leads 
to   g(x1,x3) and z(x1,x3). 



ANOVA Based Approach



ANOVA Based Approach





Still problems ??
ANOVA may not reduce anything…
How about represent the existing parameters 
in other parameters with a shorter list of new 
parameters ?
The answer is YES, but you need to identify the 
transfer matrix B between the new and old 
parameters effectively



Another way is through additional intermediate 
mapping the parameter space p to the output 
performance function φ

The reduction is achieved if k<<n

Definition: The space B generated by is 
called the EDR space. Any non-zero vector in the EDR 
space is called an EDR direction.

Effective Dimension Reduction (EDR)
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Effective Dimension Reduction (EDR)
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Effective Dimension Reduction (EDR)
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Therefore the intermediate function m capture the contribution 
of the parameter set to the output performance function
Key point is to finding the smallest effective dimension 
reduction space and such of space is unique [Cook 1998]



Proposed approach
Link process variation parameters with performance by 
weighed sum strategy

meanPerformance

Performance-Parameter Covariance matrix



Hessian Matrix

Hessian Matrix for performance is a symmetric matrix 
with 2nd order derivative and defined as

Each entry is a function of p, so we have 



Relationship between p and Hessian Matrix 

eigen-decomposition



RC network analysis



The Response of the RC network

This is the performance



PHD based algorithm for parameter reduction
Static Statistical Timing Analysis (SSTA) flow with Sliced 
Inverse Regression based reduction

PHD 
reduction



Numerical examples
Consider the timing block-wise SSTA analysis with regard to the 
gates D2, D4 and D5.
Assume that all delays are in quadratic form and at each gate the 
variational sources are not the same (at least correlated).
The propagation delay model is expressed in space of 9 deign 
parameters and we seek for dimension reduction

Arrival time at D5 is calculated as:
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Numerical examples
The new reduction algorithm reduces the original 9 variable design 
space to 3, a reduction of 60%.
If PCA is applied, the reduced space will consider the 6 variables, 
leading to only 34% reduction. 
The reconstruction of the new function is 
carried through least square approximation

Arrival time at D4 Arrival time at D5



Numerical examples
ISCASS’85 benchmark circuits 

We determine different input-output paths and estimated  the arrival time 
with Monte Carlo, SSTA + PCA, SSTA+PHD
Assume deterministic input for tested paths 
All transistors and interconnects are affected by process variation 
The expression for intermediate arrival times are reduced with PHD at 
most after 3 gates in series. 



Numerical examples
The results show clearly the advantage of using the proposed reduction 
scheme over PCA: new method can achieve 20% to 50% parameter 
reduction with only less than 8% error on average.. 



Conclusions
We propose a new way of reducing the statistical variations.
The new approach creates an effective reduction subspace 
and provides a transformation matrix by using the mean and 
variance of the response surface. 
With the generated transformation matrix, the proposed 
method maps the original statistical variations to a smaller set
of variables with which we process variability analysis. 
The computational cost due to the number of variations is 
greatly reduced.


