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Motivations

= The continuously decreasing feature sizes provides high speed
and high density but cause process variations
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Process Variations

Chemical-mechanical planarization

Ernded dielectric
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High pattern density

Chemical etching

Optical proximity effects




Sources of Variation

m Essential source of variation are the device spatial
parameters.

m  We consider the transistor width Weff, length Leff and oxide
thickness Tox

m  Global and local parameters related to spatial device
characteristics affect the performance factors
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m Example: Intra-die and Inter-die spatial correlation*®

' Flgures arc coui fesy oI IbM, Intel and 1SMC



Statistical CAD tools

= Nanometer process technology cause circuit
performance to deviate from their designed values

= In low cell level, output performance depends on
both input and intrinsic uncertainties.

= The output performance deviation is approximated
as polynomial with respect the variational sources
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Variational Analysis

m Statistical static timing
analysis
¢ Propagate correlated

operators: sum and
maximum

m Statistical interconnect max,@
timing analysis
¢ Require aricher palette A
of computations

¢ Not easy to represent A
statistics and push
them through model

reduction algorithms Ag A ;j\ j\;

(Courtesy of Rutenbar)

normal distribution @ j\
¢ A limited number of M} jL |A




Performance based strategy

We calculate cell level performance using 2nd order
polynomial function.

Along each path/block, the performance measures the
variation impact of all traversed cells.

The output performance values is 2nd order polynomial with
many variables

{p1,p2} {p1,..pa} {p1,..pe} {p1,..P2n}

—2d Order estimation
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Performance factor approximation

The general regression model of the performance function:

gozm(vl,vz,...vk)
We seek for reduction of the input space p=[r.»..-.r,] in compact
form along with keeping the statistical properties of the output

One possible way is performing the Principle Component Analysis
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a(p1,p2,---,Pn)
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Principle Component analysis

m Most traditional approaches for dimension reduction
rely on PCA.

m The principle component is linear combination of all
parameters corresponding to maximal resultant

variance.
b =argmax(b'z,b)

1Bl=1

m However an additional reduction can be achieved by
considering the output (performance) values
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PCA problems

m Example1 : P1 and P3 are uncorrelated, P2=3P1
¢ PCA returns 2 principle components
¢ In fact the Output depends on one component
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m Eample 2: g(x1, x2, x3, x4) and z(x1,x2,x3,x4), PCA leads
to g(x1,x3) and z(x1,x3).
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ANOVA Based Approach

What is ANOVA (Analysis of Variance)?
As its name sugpests — “ Analyzes Variances”
Main Idea - Decomposition of total variance

Mean response due to a particular input - Keep that
input constant and vary all other mputs

i) = f : -f:'H.-fl- Savo oo &Syl dEiy - dEy
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ANOVA Based Approach

Varance due to design vanable S
5 = [latg) - wds
Statistical Significance parameter (F):
1&g ) — p)dg;

T

We calculate the “F" parameter using ANOVA

Another Important parameter found using ANOV A i ”?
Based on these parameters, the algorithim deades whether the

mput parameter is significant or not.
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An Example

Delay for a single RC segment of a global interconnect for 0_13um
technology

delay = 19653 — 2,285, — W, — 1,825, — 0,328
+0.280E7 — 1) + 0L 0[E5 — 1)+ 1 12MEF — Mean = ’IEIm\,
FO05(EF — 1) + 0. 1T(£, 2] + 003(£,£, ) Variance = 3.15ps.~
H0 20 EaEq] — T EaEq ) + L1V E0Ey ) ps

In this case, AMOWA gives us terms that are insignificant as follows:

[ LI LN 3 - F= < < < ==
*:-4*‘:-1 =g » 0102201032104 2020420309

After removing these terms, the reduced equation is: — T
Mean = 19.64dps

day = 1065 — 2282, — .08, — 1828, 4 0.28(£F — .
delay 19.65 — 2286 — 8z — 1825 + Ghasisr — | Variance = 3.13ps..

0 12(£5 — 1) + 1. 20828 s
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Still problems ??

= ANOVA may not reduce anything...

= How about represent the existing parameters
in other parameters with a shorter list of new
parameters ?

m The answer is YES, but you need to identify the
transfer matrix B between the new and old
parameters effectively
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Effective Dimension Reduction (EDR)

= Another way is through additional intermediate

mapping the parameter space p to the output
performance function ¢

m The reduction is achieved if k<<n

= Definition: The space B generated by B=[5.4....5;] is
called the EDR space. Any non-zero vector in the EDR
space is called an EDR direction.
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Effective Dimension Reduction (EDR)
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Effective Dimension Reduction (EDR)

Therefore the intermediate function m capture the contribution
of the parameter set to the output performance function

Key point is to finding the smallest effective dimension
reduction space and such of space is unique [Cook 1998]

U



Proposed approach

m Link process variation parameters with performance by
weighed sum strategy

Performance mean

TN

T

Performance-Parameter Covariance matrix
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Hessian Matrix

m Hessian Matrix for performance is a symmetric matrix
with 2"d order derivative and defined as

82 8¢ . _8%
5!?12*5}:'1 EP:IEEPE Ephﬁpn

Ho(P) = | omisr Bogers ooee
ﬁpqzﬂpi qu‘_!ﬁpg EFEEEFM.

< o <@ 8= g
L pndp1  Opnipa Bpn Opn -

= Each entry is a function of p, so we have H¢(P) = £ [Ho(p)
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Relationship between p and Hessian Matrix

Theorem 1 Let matrix ¥, be p's covariance matrix. As-
sume ¢(p) has second order derivative with regard to p.
Then the following equation is true:

N — %
._drﬂpp _ L

eigen-decomposition

Hq‘; E'pbj — /‘\J‘ E}j
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RC network analysis

G(p) = Go+ Gip + G2p'p
C(p) =Co+Cip+ Cap'p

G(p)x + sC(p)x Bu
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The Response of the RC network

H(s) = L(G(p)+sC(p))” "B ~ My(p)+ Mi(p)s+ Ms(p)s”

t
moo 4+ moi1p + mo2p p

X

22

t
mio + miip+ mizp p

U

#
maoo + ma1p + maz2p p

This is the performance
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PHD based algorithm for parameter reduction

m Static Statistical Timing Analysis (SSTA) flow with Sliced

Inverse Regression based reduction

MAX/ADD
arrival times

|

Read Circuit

PHD
reduction

-l
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Numerical examples

Consider the timing block-wise SSTA analysis with regard to the
gates D2, D4 and D5.

Assume that all delays are in quadratic form and at each gate the
variational sources are not the same (at least correlated).

The propagation delay model is expressed in space of 9 deign
parameters and we seek for dimension reduction

Z, = (X, %y, %;) Z1=D1+D2
22 =V (X4,X5,X6) DI 1y b. Z3=max(Z1, 72)
Zy = ys(x;, X, Xy)
@,
@
@,
72-D3+D4

Arrival time at D5 is calculated as:

y=max (sum(Z,, Z,),sum(Z,,Z,))
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Numerical examples
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The new reduction algorithm reduces the original 9 variable design
space to 3, a reduction of 60%.

If PCA is applied, the reduced space will consider the 6 variables,
leading to only 34% reduction.

The reconstruction of the new functioT}L([’;ixj 551;? e :3}(@ is
carried through least square approximation
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Numerical examples

m |ISCASS’85 benchmark circuits

*

*
*

We determine different input-output paths and estimated the arrival time
with Monte Carlo, SSTA + PCA, SSTA+PHD

Assume deterministic input for tested paths
All transistors and interconnects are affected by process variation

The expression for intermediate arrival times are reduced with PHD at
most after 3 gates in series.
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Numerical examples

= The results show clearly the advantage of using the proposed reduction
scheme over PCA: new method can achieve 20% to 50% parameter
reduction with only less than 8% error on average..
Circnat | Number of PCA New PCA delay | New delay PCA New
delay delay variance variance reduction | reduction
Gates mean efror (Yo) | mean eqvor (%) error (%) error (%) (%) (%)
CI7 6 03 04 63 i3 73 42
C432 160 23 19 92 71 37 61
C499 202 34 22 110 B3 73 39
C8a0 183 10 30 6.0 60 H a4
C1333 546 32 30 53 6.0 30 38
C1908 880 I 10 61 71 10 4
C2670 1193 11 29 5.0 43 20 30
C3540 1669 54 10 8.0 B0 23 33
C3313 7307 50 5.0 83 B3 33 33
C6288 2416 16 26 6.6 70 23 36
C7532 3512 17 232 10 74 70 53
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Conclusions

We propose a new way of reducing the statistical variations.

The new approach creates an effective reduction subspace
and provides a transformation matrix by using the mean and
variance of the response surface.

With the generated transformation matrix, the proposed
method maps the original statistical variations to a smaller set
of variables with which we process variability analysis.

The computational cost due to the number of variations is
greatly reduced.
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