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Interconnect Process Variation

� Interconnect delay and reliability highly affect VLSI 
performance. 

� The variability of interconnect parameters will raise up 
to 35%.
 Sirvastava et al., Springer, 2005.

� The worst-case corner models cannot capture the 
worst-case variations in interconnect delay.
 Liu et al., DAC 2000

� The interconnect optimization guided by statistical 
analysis techniques has become an inevitable trend.
 Visweswariah, SLIP 2006
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Previous Work in Statistical Optimization

� Statistical gate sizing with timing constraints using 
Lagrangian Relaxation.
 Choi et al.,” DAC 2005.

� Statistical power minimization by delay budgeting using 
second order conic programming.
 Orshansky et al., DAC 2005.

� Statistical gate sizing using geometric programming
 Patil et al., ISQED 2005.

� No statistical optimization work consider both 
interconnect and device sizing.
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Comparison with Previous Work 

Power, timing, 
thermal

TimingConstraint 

AreaPower Objective

Elmore delay model
(nonlinear term)

Linear model
(linear term)

Delay Model

Gate and wireGate onlySizing variable

Our workOrshansky’s work
(DAC 2005)

Due to the nonlinear term introduce by the Elmore delay model, the 
optimization using both gate and wire sizing will be much harder to 
solve.
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Delay Model

� Our delay model and timing constraint:
 Elmore delay model

 Timing constraint:
 ai = arrival time of gate i

� Delay model and timing constraint used in previous 
work in DAC 2005:

 di
0 = delay due to the sizing for maximum slack

 di = slack added to node i due to the loading

iiji ddaa ++≥ 0

iji Daa +≥

Di = Rg ( CwXwLw + CgXi) /Xj +
RwLw( CwXwLw/2 + CgXi)/(Xw)

Higher order 
(quadratic) terms!

linear terms!
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Statistical Circuit Optimization with SOCP
� Second-order conic programming (SOCP)

 Convex optimization
 Theoretical runtime O(N1.3)
 Orshansky (DAC 2005), Davoodi (DAC 2006)

� Second-order conic constraint:
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Linear terms!
Nonlinear (quadratic) terms are not applicable!

Approximation 
method
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Approximation Method

� Fix the gate size in the 
timing constraint.
 Reduce the timing 

constraint from quadratic 
order to linear order.

� Approximate the gate 
sizes by a two-stage flow.
 Iteratively reduce the 

approximation errors. 
 The flow is similar to 

Sequential Linear Program 
(SLP).

Solve the SOCP problem 
under current constraints

(gate size fixed) 

Update the gate size 
of timing constraints and 

form a new SOCP problem

convergence
or max iterations

Finish
yes

no
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Our Contributions

� The first work of statistical optimization on circuit 
interconnect and devices
 Previous work considers only circuit devices (gates).
 Statistical optimization for considering both interconnect and 

devices is much harder.

� The first work that statistically optimizes the area with 
thermal- and timing-constrained parametric yields
 Most existing statistical optimization considers only timing.

� The first work capable of analytically transforming the 
statistical RC model into an SOCP
 Previous work uses linear delay model
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Timing Constraint

� # of paths may grow exponentially to the circuit size.
� To reduce problem size, we distribute the timing 

information to each node.
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Thermal Constraint

� Electron Migration (EM) lifetime reliability of metal 
interconnects is governed by the well-known Black’s 
equation:

� The design is reliable when

TTF: time-to-fail period
A* : a constant 
j    : average current density

Q    : activation energy
KB  :  Boltzmann’s constant.
Tm :  metal temperature

j0: specific current density
Tref: specific metal temperature
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Average Temperature of the Chip

� The average temperature of the chip, Tavg, can be 
estimated by:

 Banerjee et al., ISPD 2001.

Ptot : total power consumption of the chip 
Tair : ambient temperature
Rn : thermal resistance of the substrate and the package
A : chip area

Power
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Power Constraint

� Need to constrain chip’s temperature under a 
reasonable bound during the optimization:

 For simplicity, consider the dynamic power 
consumption only.

 Pi
B: the power bound of the gate i

 ci : the downstream capacitance of the gate I
 αi : switching activity of component I
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Deterministic Formulation

f: working frequency; αi : switching activity of component I; ci: load 
capacitance of component I; ω: path in the path set Ω.

Timing constraint

Thermal constraint

Power constraint

li: gate unit area or wire length
xi: gate or wire size (sizing variable)
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Variation Models

� Introduce two process parameters as the variation 
sources: Inter-layer dielectric (ILD) thickness (H), and 
metal thickness (T).

� R and C can be approximated by the first-order Taylor 
expression:

 a1, b1, b2 are sensitivities calculated by the differential 
differentiation of:

 Srivastava et al., Springer 2005.

Cgnd/ε: normalized capacitance
S: space between parallel lines

Rnom/Cnom: nominal value of R/C
∆T/∆H : random deviation of 
metal thickness/ILD thickness
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RC Variability

� Assume T and H are Gaussian, the variability 
magnitude of R and C can easily be calculated by:

� Apply the interconnect delay variation metric to 
calculate the variability of the product of R and C.
 Well captured by a normal distribution with 1.2% average error 

of the mean delay and 3.8% average error of the standard 
deviation.

 Blaauw et al., DAC 2004.
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Statistical Formulation

 δ/ζ/η: Thermal/Timing/Power yield constraint

Deterministic formulation Statistical formulation
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Transformation into SOCP  

� Theorem: Given independent Gaussian random 
vectors ai and bound vectors bi, the parametric yield (η) 
problem is as follows:

the problem can be reformulated as an SOCP:

 Φ-1: the cumulative density inverse function
 Boyd and Vandenberghe, Cambridge, 2004.
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Transformation Flow

variance:
mean:

zero mean unit variance 
Gaussian variable

cumulative density function
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Thermal & Power Constraints in SOCP Form
� Thermal constraint:

� Power (Thermal distribution) constraint:
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Timing Constraint in SOCP Form

Di = Rg ( CwXwLw + CgXi) /Xj + RwLw( CwXwLw/2 + CgXi)/ Xw

Di = RjCwXwLw + RjCi + RwCw(Lw)2/2 + RmLwCi/ Xw

Timing constraint:

Xj: size of the driving gate
Xi: size of the loading gate
Xw: width of the interconnect
Lw: length of the interconnect

(constant)

Only Xw is the sizing variable
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Statistical Problem Formulation using SOCP 

Thermal constraint

Timing constraint

Power constraint
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Program Flow

End

Assign the values of the current gate sizes 
to the gate size variables in the timing constraint

Formulate the problem into SOCP 
with gate size as fixed value in the timing constraint

yes

no

Begin

Formulate the problem with the RC variation

Solve it with the interior point method

Convergence or
Max iterations

Iteratively reduce 
the approximation 

errors.
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Experimental Setup

486230256c880

489435961298c6288
27191792927c5315
14501021429c3540
1253754499c2670
537336201c1908
852555297c1355

642396246c499
352230122c432
231211c17

#Total#Wire#Gate
Circuit SizeCircuit

Name
� Implemented in C++ & 

applied the MOSEK 
optimization tool to solve it.

� Tested on the commonly 
used ISCAS85 benchmark 
circuits in this area.

� Used Design Compiler & 
Astro with UMC 0.18¹m 
technology library to 
synthesize and place the 
circuits.
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Experimental Results
� Achieve 51%, 39%, and 26% area reductions for 70%, 84.1%, and 

99.9% yield constraints, respectively.
� Avg. / Max. # of the running iterations: 5.6 / 10
� Timing constraint error bound: 2%

70% yieldDeterministic

70.56
10.43
7.43
7.32
2.79
3.87
1.40
2.41
0.83
0.09

Runtime 
/ ite. (s)

5.23
1.88
1.10
0.74
0.33
0.58
0.37
0.41
0.24
0.06

Runtime 
/ ite. (s)

13.9674.91%383461.11152804c880

51.12%Avg.
352.7824.43%110012015.691455730c6288
31.2820.30%72785313.18913522c5315
22.2959.57%14651911.03362409c3540
14.6456.13%1210657.39275967c2670
5.5754.26%443503.2696968c1908
19.3351.93%840765.79174896c1355

9.6255.19%569572.07127103c499
4.1554.89%215431.2147752c432
0.3659.61%28920.67160c17

Total 
runtime (s)

Area 
improv.

area (µm2)Total 
runtime (s)

area (µm2)

Circuit 
name
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Experimental Results of 84.1% and 99.9% yield 

� The lower the yield constraints, the better the area optimization. 
� All constraints (timing, power, thermal) are met.

99.9% yield84.1% yield

Avg.
c6288
c5315
c3540
c2670
c1908
c1355
c880
c499
c432
c17

Circuit 
name

82.32
7.16
5.23
3.47
1.38
2.29
1.54
1.54
0.80
0.09

Runtime 
/ ite. (s)

69.74
9.24
5.57
2.93
1.56
2.11
2.91
2.11
1.26
0.09

Runtime 
/ ite. (s)

15.4129.75%1073497.8256.53%66420

25.60%39.21%
411.6311.30%1291240348.7123.81%1109090
28.653.18%88451436.9519.45%735838
15.7051.24%17671522.2753.28%169331
24.329.96%2484745.8541.51%161426
13.5726.96%7083012.4832.95%65020
22.93.17%16934719.0315.72%147397

4.6129.86%891488.4354.56%57758
2.4138.89%291797.4841.66%27860
0.4751.68%34600.652.60%3394

Total 
runtime (s)

Area 
improv.

area (µm2)Total 
runtime (s)

Area 
improv.

area (µm2)
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Delay, Power and Temperature Performance

� Though the delay and the maximum metal temperature 
are increased, they all meet the given bounds.  
 Fully utilized the constraint bound to get the best optimization

results.

19.697.2643.4464.03170.15208.84253.43c880

11.62 7.35513.14661.621148.41913.331333.91c6288
2.7210.8011.131Comparison

19.55 7.78355.45365.65421.54313.52445.58c5315
14.03 8.2572.65143.14245.85308.59507.80c3540
22.72 8.8898.69103.81229.94176.66290.84c2670
31.78 7.0928.3643.32136.11161.09222.91c1908
27.47 7.3767.2478.56241.45203.45274.55c1355

27.20 7.2035.2356.10135.32153.79186.13c499
23.46 6.9712.5922.96136.62154.59247.65c432
10.05 8.191.352.0232.2122.1936.82c17
AfterBeforeAfterBeforeAfterBeforeBound

Max Tincrease (�) Power (mW)Delay (ns)Circuit 
Name
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Conclusions

� Presented the first statistical work for area minimization 
under thermal and timing constraints by gate and wire 
sizing.
 Obtained much better results than those of the deterministic 

method.

� Formulated statistical RC model by SOCPs which can 
be solved efficiently and effectively.
 Used more accurate delay model (Elmore delay model)
 Solved the problem by a two-stage approximation flow

Nonlinear terms are not applicable to SOCP
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Thank You
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Temperature Distribution
� Applying the Finite Difference Method (FDM), we can divide the 

whole chip into m mesh nodes and calculate each node’s 
temperature by

 Chapman, “Heat Transfer,” New York: Macmillan, 1984 Vol., 4th Ed..

Pi: ith mesh node’s power 
dissipation

Ti: ith mesh node’s 
temperature 

g: power density of the heat sources (W/m3)
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Temperature Dependent Delay

� An inseparable aspect of electrical power distribution 
and signal transmission through the interconnects

� Resistance is dependent of Temperature

 ρ0: the resistance per unit length at reference temperature
 β: the temperature coefficient of resistance (1/°C)

( ))(1)( 0 xTxr ⋅+= βρ
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Interconnect Temperature Calculation
� The interconnect temperature is given by

Not linear functions

xi : wire width
θint : the thermal impedance of the interconnect line to the chip
σ: duty cycle
Vcross : cross voltage of wire
tox : the total thickness of the underlying dielectric
tm : the thickness of the wire
Kox : the thermal conductivity
l : wire length
Rm : the temperature dependent unit resistance
ψ : the heat spreading parameter

Least Square Estimator
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Least Square Estimator (LSE)

� Least squares solves the problem by finding the line for 
which the sum of the square deviations (or residuals) in 
the d direction (the noisy variable direction) are 
minimized.
 Apply Cramer Rule to find the A1 and A0, which minimizes the 

square deviations 

y = A1x +A0

Cramer Rule: 
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Approximation for Thermal Constraint

� Let N = 5 and pick five sizes of xi, we can approximate 
the thermal constraint by Least Square Estimator (LSE).
 Banerjee et al., DAC 1999


