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Keeping up with Moore’s law:

Principles for dealing with complexity:
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NoC = More Reqularity and Higher Abstraction

From: Dedicated signal wires To: Shared network
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NoC essentials
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Communication by packets of bits

Routing of packets through several hops, via switches
Parallelism

Efficient sharing of wires
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Origins of the NoC concept

*

*

The idea was talked about in the 90’s,
but actual research came in the new Millenium.

Some well-known early publications:

Guerrier and Greiner (2000)
— “A generic architecture for on-chip packet-switched interconnections”

Hemani et al. (2000)
— “Network on chip: An architecture for billion transistor era”

Dally and Towles (2001)
— “Route packets, not wires: on-chip interconnection networks”

Wingard (2001)
— “MicroNetwork-based integration of SoCs”

Rijpkema, Goossens and Wielage (2001)
— “A router architecture for networks on silicon”

Kumar et al. (2002)
— “A Network on chip architecture and design methodology”

De Micheli and Benini (2002)
— “Networks on chip: A new paradigm for systems on chip design”




From buses to networks
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Original bus features:

One transaction at a time
Central Arbiter

Limited bandwidth
Synchronous

Low cost




Advanced bus
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Original bus features:

New features:

® One transaction at a time ® Versatile bus architectures

® Central Arbiter

® Limited bandwidth
® Synchronous

® Low cost

® Pipelining capability

® Burst transfer

¢ Split transactions

® Overlapped arbitration

® Transaction preemption and resumption

® Transaction reordering...




Evolution or Paradigm Shift?
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+ Architectural paradigm shift
= Replace the wire spaghetti by a network
+ Usage paradigm shift
= Pack everything in packets
+ Organizational paradigm shift
= Confiscate communications from logic designers

= Create a new discipline, a new infrastructure responsibility
¥ Already done for power grid, clock grid, ...




Past examples of paradigm shifts in VLSI

The Microprocessor

From: Hard-wired state machines
To: Programmable chips

+ Created a new computer industry [£2F5

Logic Synthesis

From: Schematic entry
To: HDLs and Cell libraries

+ Logic designers became programmers
¢+ Enabled ASIC industry and Fab-less companies
+ “System-on-Chip”
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Characteristics of a’paradigm shift

*

*

*

*

S
Solves a critical problem (or several problems) e P ‘\z‘eg‘
K at 0
Step-up in abstraction Leﬁ;gﬁressed Y

Design is affected:

= Design becomes more restricted

= New tools

= The changes enable higher complexity and capacity

= Jump in design productivity

Initially: skepticism. Finally: change of mindset!
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Critical problems addressed by NoC

1) Global interconnect design problem:
delay, power, noise, scalability, reliability

2) System integration
productivity problem

3) Chip Multi Processors
(key to power-efficient computing)




1(a): NoC and Global wire delay

Long wire delay is dominated by Resistance

Add repeaters

>o >o >o

Repeaters become latches (W|th clock frequency scallng)




1(b): Wire Design for NoC
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1(c): NoC Scalability

For Same Performance, compare the wire-area cost of:

d n d Jn
Simple Bus:“

O(n‘?’\/;) Jn

NoC:
O(n)

Point- i i

to- . i Segmented
Point: ; ! BSS: | v

0(722 \/;) | O(n \/;) |

E. Bolotin at al. , “Cost Considerations in Network on Chip”, Integration, special issue on Network on Chip, October 2004
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1(d): NoC and communication reliability

*

Fault tolerance and error correction

0

0

A. Morgenshtein, E. Bolotin, I. Cidon, A. Kolodny, R. Ginosar, “Micro-modem - reliability solution for NOC
communications”, ICECS 2004
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1(e): NoC and GALS

¢+ System modules may use different clocks
= May use different voltages

¢+ NoC can take care of synchronization

+ NoC desigh may be asynchronous
= No waste of power when the links and routers are idle

iIe =
1

T
=0,




2: NoC and engineering productivity

+ NoC eliminates ad-hoc global wire engineering

¢+ NoC separates computation from communication
* NoC supports modularity and reuse of cores

+ NoC is a platform for system integration, debugging and testing
_ T ——

Call for Participation

DATEOT

DATE 2007 Friday Workshop on

Diagnostic Services in Network-on-Chips
— Test, Debug, and On-Line Monitoring —

Palais des Congrés Acropolis — Nice, France 18
Friday April 20, 2007




3: NoC and CMP

* Uniprocessors cannot provide _
Power-efficient performance growth Uniprocessor
» |nterconnect dominates dynamic power Gate dynamic power
| cy P Inter- (Magen et al., SLIP 2004)
» Global wire delay doesn’t scale connect
» |nstruction-level parallelism is limited Diff.
+ Power-efficiency requires many Uniprocessor Performance

parallel local computations
=  Chip Multi Processors (CMP)
» Thread-Level Parallelism (TLP)

“Pollack’s rule”

+ Network is a natural choice for CMP!

Cell Broadband Engine Processor

Die Area (or Power)
(F. Pollack. Micro 32, 1999)

Teraflops Research Chip

intel/) .,



Why Now is the time for NoC?

Difficulty of DSM wire design
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Characteristics of a’paradigm shift

+ Step-up in abstraction \ooK at

+ Design is affected: Now:
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= Design becomes more restricted

= New tools

= The changes enable higher complexity and capacity

= Jump in design productivity

¢ |Initially: skepticism. Finally: change of mindset!
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Traffic model abstraction

Flow BW Packet Latency
Size

14 500Kb/s 1Kb 5nsec

45 1.5Mb/s 3Kb 12nsec

7=10 200Kb/s 2Kb Snsec @ @ @ @
111 50Kb/s 2Kb 15nsec
211 50Kb/s 1Kb 22nsec

311 300Kb/s 3Kb 15nsec

411 1.5Mb/s 5Kb 22nsec

5&11 50Kb/s 1Kb 12nsec \

6~11 300Kb/s 1Kb 22nsec

711 1.5Mb/s 5Kb 5nsec @
811 50Kb/s 1.5Kb 12nsec \/
911 300Kb/s 2Kb 15nsec
1011 1.5Mb/s 3Kb 12nsec

Traffic model may be captured from actual traces of functional simulation
+ A statistical distribution is often assumed for messages

22




Data abstraction

Message

Packet

Flit
(Flow control digit)

Phit
(Physical unit)

eader Payload

Dest. Body

Tail
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Layers of Abstraction in Network Modeling

+ Software layers
= QJS, application
+ Network and transport layers

= Network topology e.g. crossbar, ring, mesh, torus, fat tree,...
=  Switching Circuit / packet switching: SAF, VCT, wormhole
= Addressing Logical/physical, source/destination, flow, transactio
= Routing Static/dynamic, distributed/source, deadlock avoidance
= Quality of Service €.g. guaranteed-throughput, best-effort

= Congestion control, end-to-end flow control
+ Data link layer

herev
= Flow control (handshake) ial
tuto"™ Jmpie
= Handling of contention Kip a e)(am
= Correction of transmission errors Let oK at an
+ Physical layer ar\d 10

= Wires, drivers, receivers, repeaters, signaling, circuits,..

S~
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Architectural choices depend on system needs

Reconfiguration
rate
during run time CMP
ASSP
at boot time
FPGA
at design time ASIC
S g
single General Flexibility
application purpose computer

+ A large design space for NoCs!

|. Cidon and K. Goossens, in “Networks on Chips” , G. De Micheli and L. Benini, Morgan Kaufmann, 2006
25




Example: QNoC

Technion’s Quality-of-service NoC architecture

¢+ Application-Specific system (ASIC) assumed
= ~10to 100 IP cores
» Traffic requirements are known a-priori

¢+ Overall approach
= Packet switching

= Best effort
(“statistical guarantee’)

= Quality of Service
(priorities)

(R)

/
Module Module Module .—/

* E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny., “QNoC: QoS architecture and design process

for Network on Chip”, JSA special issue on NoC, 2004. 26




Choice of generic network topology \
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Topology customization

* lIrregular mesh

= Address = coordinates in the basic grid

(0,0) (0,2) (0,3) (0,5)
(1,0) (1,1) (1,4)| |(1,5)
(1,3)
(2,2) (2,4)
(2,0)
(3,2)| |(3,3)| [(3,4)| |(3,5)
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Message routing path

+ Fixed shortest-path routing (X-Y)

v

D NN NN

Simple Router

No deadlock scenario

No retransmission

No reordering of messages
Power-efficient
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Wormhole Switching

+ Small number of buffers
+ Low latency

30




Blocking issue

¢ The “hot module” IP1 is not a local

problem.

Traffic destined elsewhere

suffers too!

The Green packet
experiences a long delay
even though it does NOT
share any link with IP1
traffic

31




Statistical network delay

% of packets 4

Time

¢+ Some packets get more delay than others, because of blocking




Average delay depends on load

B IMean delay (analysis)

o)

|| % Mean delay (Simulation)

Ly

I

o

Normalized Time

M

%.1 02 03 04 05 06 07 08 09
IUtilization
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Quality-of-Service in QNoC

¢ Multiple priority (service) levels
= Define latency / throughput

= Example: N
. . A
¥ Signaling
¥ Real Time Stream
¥  Read-Write

*  Preemptive
+ Best effort performance

= E.g. 0.01% arrive
later then required

— * E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny., “QNoC: QoS architecture and design process
for Network on Chip”, JSA special issue on NOC, 2004.
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Router structure

R Module /
Module —> ' —P —
or . Router
another router .
T U
* Flits stored in input ports ﬁ

*  Output port schedules <:4:_,
transmission of pending

flits according to: :
*  Priority (Service Level) / — > —
 Buffer space in next router
«  Round-Robin on input ports . - -
of same SL . .
. Preempt lower priority
packets

RN

(X ] ]
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Virtual Channels
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QNoC router with multiple
Virtual Channels
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Simulation Model

¢+ OPNET Models for QNoC
+ Any topology and traffic load
+ Statistical or trace-based traffic generation at source nodes

:ﬁProject: be_cmp_8x8_1 Scenario: mesh8_sea [Subnet: top]

File Edit Wiew Scenarios

Topology  Traffic Protocols DES  Windows Help
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Simulation Results

+ Flit-accurate simulations

F| == Slgnallng
B Real-Time
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Perspective 1: NoC vs. Bus

NoC

Bus

Aggregate bandwidth grows
Link speed unaffected by N
Concurrent spatial reuse
Pipelining is built-in
Distributed arbitration
Separate abstraction layers

However:

No performance guarantee
Extra delay in routers

Area and power overhead?
Modules need network interface
Unfamiliar methodology

+ Bandwidth is limited, shared
+ Speed goes down as N grows
+ No concurrency

¢ Pipelining is tough

¢ Central arbitration

+ No layers of abstraction
(communication and
computation are coupled)

However:
+ Fairly simple and familiar
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Perspective 2: NoC vs. Off-chip Networks

NoC Off-Chip Networks
+ Sensitive to cost:
. area
" power Cost is in the links

Wires are relatively cheap
Latency is critical

Traffic may be known a-priori
Design time specialization
Custom NoCs are possible

Latency is tolerable
Traffic/applications unknown
Changes at runtime

Adherence to networking
standards

41




NoC can provide system services
Example: Distributed CMP cache

PO P1
=
AN = '
0 / A o | i
2 L&
= | R
N~ // Sdln u'.w':: I f"?y
o /1 N 2 3. READ EXCL. REQ i
U oietribhted Lo 5
NV oe }.\ // - I
5 _ 9. INVALID. ACES
—~—1 o 6. Read EXCL. RESP
(data transfer)
(o)
o o6 63
<
P5 P4
Y

~
* E.Bolotin, Z. Guz, 1.Cidon, R. Ginosar and A. Kolodny, “The Power of Priority: NoC based Distributed Cache
Coherency”, NoCs 2007. 42
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Characteristics of a’paradigm shift

NoC
» Design is affected: _\ mpac’t ?;
= Design becomes more restricted \Nhat’s t:\‘\ep d S"gﬂ-
= New tools oK on ¢

= The changes enable higher complexity and capacity

= Jump in design productivity

¢ |Initially: skepticism. Finally: change of mindset!
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VLSI CAD problems

Application mapping
Floorplanning / placement
Routing

Buffer sizing

Timing closure
Simulation

Testing

44




VLSI CAD problems reframed for NoC

¢+ Application mapping (map tasks to cores)

¢+ Floorplanning / placement (within the network)

¢+ Routing (of messages)

+ Buffer sizing (size of FIFO queues in the routers)

+ Timing closure (Link bandwidth capacity allocation)

¢+ Simulation (Network simulation, traffic/delay/power modeling)

¢+ Testing
¢ ... combined with problems of designing the NoC itself
(topology synthesis, switching, virtual channels, arbitration, 4
flow control,...... ) C—base
aNOY _mpl®
et's 5°° gow &
Le sigh
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QNoC-based SoC design flow
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Routing on Irregular Mesh

v" Around the Block

y

»

A

Goal: Minimize the total size of routing tables required in the switches

E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, "Routing Table Minimization for Irregular Mesh NoCs", DATE 2007.
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Routing Heuristics for Irregular Mesh

©

o

o

S

S
i

Routing Cost [gates]

Routing Costin 12x12 NoC
Random problem instances

EN=N=N

Distributed Routing (full tables)

X-Y Routing with Deviation Tables
Source Routing

Source Routing for Deviation Points

30

Hotspot Number

50

mDR
oTT
O XYDT
E SR
m SRDP

Systems with real applications
1000

-
o
o

Log ( Routing Cost)
3

MPEG4 VOPD
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Timing closure in NoC

Define inter-

. Module
module traffic

l Module Module

Place modules

Module Module
Module

Increase link Module

capacities

Module

QoS
Satisfied?

+ Too low capacity results in poor QoS
+ Too high capacity wastes power/area
+ Uniform link capacities are a waste in application-specific systems!
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Network Delay Modeling

+ Analysis of mean packet delay in wormhole network
= Multiple Virtual-Channels
= Different link capacities

= Different communication I Network time (analysis)
demands 61| [__]Queueing time (analysis)
=% Network time (simulation)
o 2f| % Delivery time (simulation)
£
Queuing delay: | - =4l
i network -
0' = e S
1 ; 2 © 3t
2-(——-A4" £
! =]
network = 21
Flit interleaving delay approximation:

; [
. =
J 2 : S S
Cj _l' ﬂv -m %.1 0.2 03 04 05 06 0.7
fljer! A f#i Utilization
"
* |. Walter, Z. Guz, I. Cidon, R. Ginosar and A. Kolodny, “Efficient Link Capacity and QoS Design for
Wormhole Network-on-Chip,” DATE 2006.




Capacity Allocation Problem

¢+ Given:
; ¢ Such that:
= system topology and routing

= Each flow’s bandwidth (f ) and Yliink e: Z fl < Ce
delay bound (T'gg() il ec path(i)
+  Minimize total link capacity (ch . L
= Vilowi: T <Tpy,
Packet Delay Slack

il

S~ ]
00-=01 01-=00 01-=02 01-=10 01-=12 01-=13 01 =21 03-=01 10-=01 12-=01 12 =22 20-=03 21-=01 22-=01 23-=13
Flow [source-=destination]

o T T T

I iriform
eo - | 0 Adgoritte

a0 -

Slack [%]

30 -

20
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State of the art:
NoC is already here!

+ > 50 different NoC architecture proposals in the literature;
2 books; hundreds of papers since 2000

¢+ Companies use (try) it
= Freescale, Philips, ST, Infineon, IBM, Intel, ...

¢+ Companies sell it
= Sonics (USA), Arteris (France), Silistix (UK), ...

NETWORKS
ON
CHIPS

mladannl oF e ocs senive IV E4

+ 1st IEEE Conference: NOCS 2007

» 102 papers submitted ﬂ{ﬂ}, 7_9} 2007
Princeton, New Jersey

International Symposium on Networks-on-Chips




NoC research community

Academe and industry

VLSI/ CAD people

Computer system architects
Interconnect experts
Asynchronous circuit experts
Networking/Telecomm experts
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Possible impact:
Expect new forms of Rent’s Rule?

+ View interconnection as

transmission of messages over virtual wires
(through the NoC)

+ Model system interconnections among blocks In
terms of required bandwidth and timing

= Dependence on NoC topology
* Dependence on the S/W application (in a CMP)
» Usage for prediction of hop-lengths, router design, ....

p— *D. Greenfield, A. Banerjee, J. Lee and S. Moore, “Implications of Rent's Rule for NoC Design
and Its Fault-Tolerance”, NoCS 2007 (to appear)
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Summary

+ NoC is a scalable platform for billion-transistor chips

¢+ Several driving forces behind it

¢+ Many open research questions

¢+ May change the way we structure and model VLSI systems
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