Networks on Chips (NoC) –

Keeping up with Rent's Rule and Moore's Law

Avi Kolodny

Technion – Israel Institute of Technology

International Workshop on System Level Interconnect Prediction (SLIP)

March 2007

Acknowledgements

- Research colleagues Israel Cidon, Ran Ginosar, Idit Keidar, Uri Weiser
- Students: Evgeny Bolotin, Reuven Dobkin, Roman Gindin, Zvika Guz, Tomer Morad, Arkadiy Morgenshtein, Zigi Walter
- Sponsors

Keeping up with Moore's law:

Principles for dealing with complexity:

NoC = More Regularity and Higher Abstraction

NoC essentials

- Communication by packets of bits
- Routing of packets through several hops, via switches
- Parallelism
- Efficient sharing of wires

Origins of the NoC concept

- The idea was talked about in the 90's, but actual research came in the new Millenium.
- Some well-known early publications:
 - Guerrier and Greiner (2000)
 - "A generic architecture for on-chip packet-switched interconnections"
 - Hemani et al. (2000)
 - "Network on chip: An architecture for billion transistor era"
 - Dally and Towles (2001)
 - "Route packets, not wires: on-chip interconnection networks"
 - Wingard (2001)
 - "MicroNetwork-based integration of SoCs"
 - Rijpkema, Goossens and Wielage (2001)
 "A router architecture for networks on silicon"
 - Kumar et al. (2002)
 - "A Network on chip architecture and design methodology"
 - De Micheli and Benini (2002)
 - "Networks on chip: A new paradigm for systems on chip design"

From buses to networks

Original bus features:

- One transaction at a time
- Central Arbiter
- Limited bandwidth
- Synchronous
- Low cost

Advanced bus

Original bus features:

- One transaction at a time
- Central Arbiter
- Limited bandwidth
- Synchronous
- Low cost

New features:

- Versatile bus architectures
- Pipelining capability

Multi-Level

Segmented

Bus

- Burst transfer
- Split transactions
- Overlapped arbitration
- Transaction preemption and resumption

В

В

• Transaction reordering...

Evolution or Paradigm Shift?

- Architectural paradigm shift
 - Replace the wire spaghetti by a network
- Usage paradigm shift
 - Pack everything in packets
- Organizational paradigm shift
 - Confiscate communications from logic designers
 - Create a new discipline, a new infrastructure responsibility
 - Already done for power grid, clock grid, ...

Past examples of paradigm shifts in VLSI

The MicroprocessorFrom: Hard-wired state machinesTo: Programmable chips

Created a new computer industry

Logic Synthesis

- From: Schematic entry
- To: HDLs and Cell libraries
 - Logic designers became programmers
 - Enabled ASIC industry and Fab-less companies
 - "System-on-Chip"

Characteristics of a paradigm shift

successful

- Let's look at the **problems** addressed by NoC Solves a <u>critical problem</u> (or several problems)
- Step-up in abstraction
- Design is affected:
 - Design becomes more <u>restricted</u>
 - New tools
 - The changes enable higher complexity and capacity
 - Jump in <u>design productivity</u>
- Initially: skepticism. Finally: change of mindset!

Critical problems addressed by NoC

1) Global interconnect design problem: delay, power, noise, scalability, reliability

2) System integration productivity problem⁶

3) Chip Multi Processors

(key to power-efficient computing)

1(a): NoC and Global wire delay

Long wire delay is dominated by Resistance

1(b): Wire Design for NoC

- NoC links:
 - Regular
 - Point-to-point (no fanout tree)
 - Can use transmission-line layout
 - Well-defined current return path
- Can be optimized for <u>noise / speed / power</u>
 - Low swing, current mode,

1(c): NoC Scalability

For Same Performance, compare the wire-area cost of:

E. Bolotin at al., "Cost Considerations in Network on Chip", Integration, special issue on Network on Chip, October 2004

1(d): NoC and communication reliability

• Fault tolerance and error correction

A. Morgenshtein, E. Bolotin, I. Cidon, A. Kolodny, R. Ginosar, "Micro-modem – reliability solution for NOC communications", *ICECS* 2004

1(e): NoC and GALS

- System modules may use different clocks
 - May use different voltages
- NoC can take care of synchronization
- NoC design may be asynchronous
 - No waste of power when the links and routers are idle

2: NoC and engineering productivity

- NoC eliminates ad-hoc global wire engineering
- NoC separates computation from communication
 - NoC supports modularity and reuse of cores
- NoC is a platform for system integration, debugging and testing

Call for Participation

DATE 2007 Friday Workshop on

Diagnostic Services in Network-on-Chips

- Test, Debug, and On-Line Monitoring -

Palais des Congrès Acropolis — Nice, France Friday April 20, 2007

3: NoC and CMP

Uniprocessors cannot provide Power-efficient performance growth

- Interconnect dominates dynamic power
- Global wire delay doesn't scale
- Instruction-level parallelism is limited

Power-efficiency requires many parallel <u>local</u> computations

- Chip Multi Processors (CMP)
- Thread-Level Parallelism (TLP)

• Network is a natural choice for CMP!

Teraflops Research Chip

Characteristics of a[/]**paradigm shift**

successful

- Solves a <u>critical problem</u> (or several problems) and the Abstraction
 Step-up in <u>abstraction</u>
 <u>Design</u> is affected: Now, let's look at the NoC provided by NoC
- - Design becomes more restricted
 - New tools
 - The changes enable higher complexity and capacity
 - Jump in design productivity
- Initially: skepticism. Finally: change of mindset!

Traffic model abstraction

Flow	BW	Packet Size	Latency	
1⇔4	500Kb/s	1Kb	5nsec	
4⇔5	1.5Mb/s	3Kb	12nsec	
7⇔10	200Kb/s	2Kb	5nsec	
1⇔11	50Kb/s	2Kb	15nsec	
2⇔11	50Kb/s	1Kb	22nsec	
3⇔11	300Kb/s	3Kb	15nsec	
4⇔11	1.5Mb/s	5Kb	22nsec	
5⇔11	50Kb/s	1Kb	12nsec	
6⇔11	300Kb/s	1Kb	22nsec	
7⇔11	1.5Mb/s	5Kb	5nsec	
8⇔11	50Kb/s	1.5Kb	12nsec	
9⇔11	300Kb/s	2Kb	15nsec	
10⇔11	1.5Mb/s	3Kb	12nsec	

- Traffic model may be captured from actual traces of functional simulation
- A statistical distribution is often assumed for messages

Data abstraction

Layers of Abstraction in Network Modeling

Software layers

O/S, application

Network and transport layers

- Network topology e.g. crossbar, ring, mesh, torus, fat tree,...
- Circuit / packet switching: SAF, VCT, wormhole Switching
- Logical/physical, source/destination, flow, transactio Addressing
- Static/dynamic, distributed/source, deadlock avoidance Routing
- e.g. guaranteed-throughput, best-effort Quality of Service
- Congestion control, end-to-end flow control

Data link layer

- Flow control (handshake)
- Handling of contention
- Correction of transmission errors

Physical layer

Let's skip a tutorial here, and look at an **example** Wires, drivers, receivers, repeaters, signaling, circuits,...

Architectural choices depend on system needs

• A large design space for NoCs!

I. Cidon and K. Goossens, in *"Networks on Chips*", G. De Micheli and L. Benini, Morgan Kaufmann, 2006

Example: QNoC

Technion's Quality-of-service NoC architecture

- Application-Specific system (ASIC) assumed
 - ~10 to 100 IP cores
 - Traffic requirements are known a-priori
- Overall approach
 - Packet switching
 - Best effort ("statistical guarantee")
 - Quality of Service (priorities)

* E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny., "QNoC: QoS architecture and design process for Network on Chip", JSA special issue on NoC, 2004.

Choice of generic network topology

(d)

(a)

- Simple mesh fits planar chip Short links

Topology customization

- Irregular mesh
 - Address = coordinates in the basic grid

Message routing path

- Fixed shortest-path routing (X-Y)
 - ✓ Simple Router
 - ✓ No deadlock scenario
 - ✓ No retransmission
 - ✓ No reordering of messages
 - ✓ Power-efficient

Wormhole Switching

- Small number of buffers
- Low latency

Blocking issue

• Some packets get more delay than others, because of blocking

Average delay depends on load

Quality-of-Service in QNoC

- Multiple priority (service) levels
 - Define latency / throughput
 - Example:
 - Signaling
 - Real Time Stream
 - Read-Write
 - DMA Block Transfer
 - Preemptive
- Best effort performance
 - E.g. 0.01% arrive later then required

* E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny., "QNoC: QoS architecture and design process for Network on Chip", JSA special issue on NOC, 2004.

Router structure

- Flits stored in input ports
- Output port schedules transmission of pending flits according to:
 - Priority (Service Level)
 - Buffer space in next router
 - Round-Robin on input ports of same SL
 - Preempt lower priority packets

QNoC router with multiple Virtual Channels

Simulation Model

- OPNET Models for QNoC
- Any topology and traffic load
- Statistical or trace-based traffic generation at source nodes

Simulation Results

• Flit-accurate simulations

Perspective 1: NoC vs. Bus

NoC

- Aggregate bandwidth grows
- Link speed unaffected by N
- Concurrent spatial reuse
- Pipelining is built-in
- Distributed arbitration
- Separate abstraction layers

However:

- No performance guarantee
- Extra delay in routers
- Area and power overhead?
- Modules need network interface
- Unfamiliar methodology

Bus

- Bandwidth is limited, shared
- Speed goes down as N grows
- No concurrency
- Pipelining is tough
- Central arbitration
- No layers of abstraction (communication and computation are coupled)

However:

• Fairly simple and familiar

Perspective 2: NoC vs. Off-chip Networks

NoC

- Sensitive to cost:
 - area
 - power
- Wires are relatively cheap
- Latency is critical
- Traffic may be known a-priori
- Design time specialization
- Custom NoCs are possible

Off-Chip Networks

- Cost is in the links
- Latency is tolerable
- Traffic/applications unknown
- Changes at runtime
- Adherence to networking standards

NoC can provide system services

Example: Distributed CMP cache

* E.Bolotin, Z. Guz, I.Cidon, R. Ginosar and A. Kolodny, "The Power of Priority: NoC based Distributed Cache Coherency", NoCs 2007.

Characteristics of a^{//}paradigm shift

successful

- Solves a <u>critical problem</u> (or several problems)
- Step-up in abstraction
- Design is affected:
 - Design becomes more restricted
 - New tools
- The impact of NoC of the impact of NoC on chip **design**? The changes enable higher complexity and capacity
 - Jump in design productivity
- Initially: skepticism. Finally: change of mindset!

VLSI CAD problems

- Application mapping
- Floorplanning / placement
- Routing
- Buffer sizing
- Timing closure
- Simulation
- Testing

VLSI CAD problems reframed for NoC

- Application mapping (map tasks to cores)
- Floorplanning / placement (within the network)
- Routing (of messages)
- Buffer sizing (size of FIFO queues in the routers)
- Timing closure (Link bandwidth capacity allocation)
- Simulation (Network simulation, traffic/delay/power modeling)
- Testing
- ... combined with problems of designing the NoC itself (topology synthesis, switching, virtual channels, arbitration, flow control,.....)

Routing on Irregular Mesh

Goal: Minimize the total size of routing tables required in the switches

E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, "Routing Table Minimization for Irregular Mesh NoCs", DATE 2007.

Routing Heuristics for Irregular Mesh

Timing closure in NoC

- Too low capacity results in poor QoS
- Too high capacity wastes power/area
- Uniform link capacities are a waste in application-specific systems!

(R)

Module

Module

Module

Module

Module

Network Delay Modeling

Analysis of mean packet delay in wormhole network

- **Multiple Virtual-Channels**
- **Different link capacities**
- **Different communication** demands

Flit interleaving delay approximation:

* I. Walter, Z. Guz, I. Cidon, R. Ginosar and A. Kolodny, "Efficient Link Capacity and QoS Design for Wormhole Network-on-Chip," DATE 2006.

Capacity Allocation Problem

- Given:
 - system topology and routing
 - Each flow's bandwidth (fⁱ) and delay bound (Tⁱ_{REQ})
- <u>Minimize total link capacity</u>

th (f^i) ar $\left(\sum_{e\in E} C_e\right)$

Such that: $\forall link e: \sum_{i \mid e \in path(i)} f^i < C_e$ $\forall flow i: T^i \leq T^i_{REQ}$

State of the art: **NoC is already here!**

- > 50 different NoC architecture proposals in the literature;
 2 books; hundreds of papers since 2000
- Companies use (try) it
 - Freescale, Philips, ST, Infineon, IBM, Intel, ...
- Companies sell it
 - Sonics (USA), Arteris (France), Silistix (UK), …

- 1st IEEE Conference: NOCS 2007
 - 102 papers submitted

International Symposium on Networks-on-Chips

NoC research community

- Academe and industry
- VLSI / CAD people
- Computer system architects
- Interconnect experts
- Asynchronous circuit experts
- Networking/Telecomm experts

Possible impact: Expect new forms of Rent's Rule?

- View interconnection as transmission of messages over <u>virtual wires</u> (through the NoC)
- Model system interconnections among blocks in terms of required <u>bandwidth and timing</u>
 - Dependence on NoC topology
 - Dependence on the S/W application (in a CMP)
 - Usage for prediction of hop-lengths, router design,

* D. Greenfield, A. Banerjee, J. Lee and S. Moore, "Implications of Rent's Rule for NoC Design and Its Fault-Tolerance", NoCS 2007 (to appear)

Summary

- NoC is a scalable platform for billion-transistor chips
- Several driving forces behind it
- Many open research questions
- May change the way we structure and model VLSI systems

