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The General Problem

The general problem Methodologies to evaluate and
guantify the performance impact of
proposed design changes are
needed prior to migrating chip
designs to future technology nodes.

On-chip interconnect is required to
satisfy a set of electrical and
physical constraints in present and
future technologies.
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The General Problem

The general problem

Questions How can we quantify the

performance impact of changes to
Interconnect lengths in a design?

How do we evaluate a performance
model?

How do model estimates compare
with estimates derived from
Interconnect measurements in
POWER4 chip designs?
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Example

< 2cm =

core -
The general problem

N\

Questions

Goals:

(1) Obtain estimates of the performance impact
of changing interconnect length in four control
logic designs in the core

(2) Re-express performance impact as an
effective reduction in dielectric constant (low-k)

Method:
(1) Derive performance model
(2) Compare estimates with measurements

POWER4
microprocessor
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Motivation and Importance to IBM

Issues:

Wire length

Via count
Performance

Metal layers

Wire cross-sections
Wire design

Yield

Design cost
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Motivation and Importance to IBM
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Ref: Microprocessor Report (various), H. Schleich, W. Schultheiss
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Motivation and Importance to IBM

Issues: Intel IBM

chip Itanium?2 POWER4
Wire length
Via count
Performance

date 7/2002 12/2001
Metal layers

) ) frequency 1.0 GHz 1.3 GHz

Wire cross-sections area 400 mm2 415 mm?
Wire des'Qn transistors 221Million 174 Million
Yield power 130 Watts 155 Watts
Design cost device 0.18-micron bulk | 0.18-micron SOI

process

metal layers | 6 Al 7 Cu

Ref: Microprocessor Report (various), Joseph Czajkowski
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How Can We Estimate Impact of
Interconnect Length Changes on Timing-Critical Paths?

Better interconnect estimates will be more important as chips
continue to increase in complexity and device count

Currently, information about interconnect requirements and
measurements are needed for successful design of today’s
complex ULSI chip circuitry

Our work provides a method to quantify the impact of interconnect
length changes on performance
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Design Migration

IBM Follow-on chip
_ POWER4
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Design Migration
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Performance
Model
Parameters
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Design Migration
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Design Migration

March 18, 2007

Performance Model

Write the path delay as a sum of delay
contributions from wires* and devices

Write expressions for path delays z; and z,
Assume 7, = T, (zero slack)

Consider the simple case of a critical path

composed of one wire and one device:

1 1
7, =TW2+ET1—EZ'M >T,

*Use lumped wire delay model of Rabaey Digital Integrated Circuits: A
Design Perspective. Englewood Cliffs, NJ: Prentice-Hall (1996).

9th Intl Workshop on System- 13
Level Interconnect Prediction



Design Migration
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Performance Model

Write expression for path delay Tllin technology 1
such that the delay in the migrated design
equals T, (zero slack):

r, =T, +(T,+dz,)<T,

To achieve this, the wire delay Toain technology 1
IS:

fu= 2 rg=a,(Lf bl

1

Solve for L,
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Design Migration

Model Equations
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Performance Model

Express the relative netlength reduction: f1

Express performance improvement as

a normalized dielectric constant: ¢;
- T
& =—"1

Tw

Express relative performance improvement: fg

T |
& gl
Express fractional performance improvement: f
f
f=—1=%
fl
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Design Migration

Model Equations

Performance
Improvement
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Performance Model

Fractional performance improvement:

—h
fractional decrease in dielectric constant compared
with fractional decrease in netlength, f

—h
fractional decrease in dielectric constant compared
with fractional decrease in netlength, f

20
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16}
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T T T T
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Performance model

assumptions and

Inputs

Interconnect model

Inputs

March 18, 2007

Design Data

Each path contains one wire and one device
Four metal layers are used in signal wiring
Each path has zero slack

T,/T, =1000ps/700ps ~ 1.439

s ~1.424

Extract functional Rent parameters from POWER4 IFU

for use with Davis model**

f = e
kR 6.15 100000 5 |Fy data
f — O 89 linear fit
p R § 100002-
5 i
£ 1000}
5 F
o [
55 100?
2’
Call3 :
1 b 1I0 | 1CI)0 | .M‘IHEI]IOOI ”I1H0.E]00b

N _(no clocking circuitry)
N+hh LA+l \A A~ gealex 7

**See interpretation of Rent's memos for ULSI circuitry: M. Y. Lanzerotti, G. Fiorenza, R. A. Rand,
IEEE Trans. VLSI, vol. 12, Dec. 2004, pp. 1330-1347.



Cycle Time of Critical Paths

Cycletime requirement

In technology 1 to
satisfy zero slack in
technology 2
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Performance Improvement

Netlength reduction
(Left-Hand Side)

and effective
reduction in

dielectric constant

(Right-Hand Side)
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Relative Performance Improvement

Relative dielectric
constant reduction
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Conclusions

Methods to evaluate and quantify performance impact due to
reductions in interconnect length in chip designs have value
iIn ULSI chip design:

« Estimates quantify the extent to which design changes can
mimic effects of expensive low-k fabrication processes

« Estimates quantify the performance impact of migrating
design to a future technology node

» Design changes can be implemented late in the design cycle

» Design changes selectively target timing-critical signals
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Future Work

Consider impact of interconnect length changes on power
dissipation, reliability, and yield

Extract design netlists from POWERG designs
-Extract design characteristics

Consider differences between models and real design
characteristics:

-Designs are typically not square
-Design area occupancy is less than unity
-Some signals have greater-than-unity fan-out

-Range of applicability of Rent’s rule covers half the range
of gate partition sizes
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