Exploiting On-Chip Data Behavior for Delay Minimization

Nallamothu Satyanarayana Adam's Engineering College Palvoncha, Andhra Pradesh India

- Motivation
- Analytical Model for Delay
- Crosstalk Classes
- Related Works
- Our Approach
- Experimental Results
- Conclusion

Motivation

In deep sub-micron level technologies

- Inter-wire capacitance (C_{I}) is higher compared to the wireto-substrate capacitance (C_{L}) .
- Large Propagation delay due to opposite transitions and relative switching activity on adjacent wires.
- As the technology shrinks, the Inter-Wire capacitance becoming more dominant, results it hurts the system performance.

Analytical Model for Delay

- Let $\lambda = C_I/C_L$, $\Delta_k = d_{t+1}^k d_t^k$, and R_T be the total resistance.
- Let d₊ be a *n*-bit data present on the bus.
- The propagation delay for transmitting a *n*-bit data d_{t+1} is calculated by Chandrakasan: $T(d_t, d_{t+1}) = max \{T_k(d_t, d_{t+1}) \mid 1 \le k \le n\},$ $T_k(d_t, d_{t+1}) = C_L R_T((1+2\lambda)\Delta_k^2 - \lambda(\Delta_{k-1}+\Delta_{k+1}))\Delta_k, 1 < k < n$ Δk is the transition occurring on line k, $\Delta k = 1$ for 0 to 1 transition $\Delta k = 1$ for 1 to 0 transition $\Delta k = 0$ for no transition

An Example
• If
$$d_t = 010$$
 and $d_{t+1} = 101$
• $T(d_t, d_{t+1}) = C_L R_T (1+4\lambda)$

• If
$$d_{t} = 000$$
 and $d_{t+1} = 111$
• $T(d_{t}, d_{t+1}) = C_L R_T$

)

Crosstalk

- Large propagation delay due to opposite transitions on adjacent wires.
- High power dissipation for driving on-chip buses.

Crosstalk Classes

 Transition patterns are classified into six different crosstalk classes.

Crosstalk Class	Relative Delay on the middle wire	Transition Pattern
1	0	,↑-↑,↓,↓, ↓-↓,↓-↑
2	$C_L R_T$	$\uparrow \uparrow \uparrow , \downarrow \downarrow \downarrow$
3	<i>C</i> _L R _T (1+λ)	-^^,-,-,-,+
4	C _L R _T (1+2λ)	-^-,-↓-,↓↓,^,↑↓↓,↓^↑
5	<i>C</i> _L R _T (1+3λ)	-++,-++,++-
6	<i>C</i> _L R _T (1+4λ)	$\uparrow \downarrow \uparrow , \downarrow \uparrow \downarrow$

Related Works

- Existing techniques use large spatial redundancy.
 Original (32 Wires)
 - Shielding techniques
 - Crosstalk Preventing Coding

Our Approaches

Most of the times, the MSB 16 bits of a 32-bit to be transmitted is same as that of the present data on the bus.

99% and 33% of times upper half of the data to be transmitted is same of that of present data on the bus for address and data buses.

Our Approaches

- To reduce the propagation delay, we are proposed two techniques:
 - <u>Data Packing (DPack)</u>: Two different n/2 bit data can be packed together and transmitted.
 - Data Permutation (DPerm): MSB bit placed between every pair of LSB bits.
 MSB bits are transmitted can act as shield wires when similarity in MSB 16bits.

Illustrating DPack Technique

S.No.	Data				
	(1111)	1110	0000	0000)	
	(6543)	2109	8765	4321)	
d_1	1101	1001	0100	1111	
d_2	1101	1001	1101	0011	
d_3	0011	0010	1010	0110	
d_4	0011	0010	1100	1001	
$d_{\mathfrak{S}}$	0011	0010	0100	0010	
d_6	0011	0010	0111	0000	
d_7	0011	0010	1111	0010	
d_8	1010	1001	0010	1101	

Transmitted Data			State	SUH		SLH		
				0	0000	0000	0000	0000
1101	1001	0100	1111	0	1101	1001	0000	0000
				1	1101	1001	1101	0011
0011	0010	1101	0011	2	0011	0010	1010	0110
1100	1001	1010	0110	3	0011	0010	1010	0110
				1	0011	0010	0100	0010
0111	0000	0100	0010	3	0011	0010	0100	0010
				1	0011	0010	1111	0010
1010	1001	1111	0010	2	1010	1001	0010	1101
1010	1001	0010	1101	0	1010	1001	0010	1101

Original data to be transmitted

Data transmitted using DPack technique

1bit ready signal + 1bit shield wire + 32 bits address / data lines + 1 bit shield wire + 3 bits status word = 38 wires required.

Data Permutation Technique

- For every data d: $a_n a_{n-1} \dots a_2 a_1$, we transmit the permuted data d': $a_n a_{n/2} a_{n-1} \dots a_2 a_{n/2+1} a_1$.
- If $d_1:a_n...a_{n/2+1}a_{n/2}...a_1 \& d_2:a_n...a_{n/2+1}a'_{n/2}...a'_1$, then transmitting $d'_1 \& d'_2$ can eliminate opposite transitions on adjacent wires.

Illustrating DPerm Technique

S.No.	Data				
	(1111	1110	0000	0000)	
	(6543)	2109	8765	4321)	
d_1	1101	1001	0100	1111	
d_2	1101	1001	1101	0011	
d_3	0011	0010	1010	0110	
d_4	0011	0010	1100	1001	
d_5	0011	0010	0100	0010	
d_6	0011	0010	0111	0000	
d_7	0011	0010	1111	0010	
d_8	1010	1001	0010	1101	

S.No.	Data				
	(1010)	1010	1010	1000)	
	(6857)	4635	2413	0291)	
d'_1	1011	0010	1101	0111	
d'_2	1111	0011	1000	0111	
d'_3	0100	1110	0001	1100	
d'_4	0101	1010	0100	1001	
d'_5	0001	1010	0000	1100	
d'_6	0001	1111	0000	1000	
d'_7	0101	1111	0000	1100	
d'_8	1000	1100	1101	0011	

Original data to be transmitted

Data transmitted using DPerm technique

32 bits address / data lines + 1 bit shield wire + 1 bit ready signal

= 34 wires required.

SLIP07

Data Transmission Using Variable Delay

- Analyze the crosstalk class of next data w.r.t. the data present on the bus.
- If the crosstalk class is from the set {1,2,3}, transmit the next data with a delay of 2[C_LR_T(1+4λ)/5].
- If the crosstalk class is n∈{4,5,6}, transmit the next data with a delay of (n-1)[C_LR_T(1+4λ)/5].

Experimental Setup

- We designed the Crosstalk Class Analyzer, crossbar switch, and the codec in Verilog and synthesized them using the Synopsys Design Compiler with TSMC 90nm technology library.
- The Predictive Technology Model is used to calculate the ground and coupling capacitance of interconnects.

Experimental Setup

 Technology parameters used in the experiments are shown below.

Parameter	Technology nodes				
	90nm	65nm	45nm	32nm	
Wire width (nm)	205	145	102.5	70	
Space (nm)	205	145	102.5	70	
Thickness (nm)	430.5	319	235.75	168	
Height of ILD (nm)	398.5	290	215.25	154	
Dielectric constant	3.3	2.7	2.3	2.3	

Experimental Setup

- We used Simplescalar 3.0 tool-set to perform experimental analysis and the SPEC-2000 CINT benchmark suite to simulate the performance of different onchip buses between the processor datapath and L1 I-cache/D-cache.
- We present the results of IL1 address bus and DL1 data bus.

Benchmark-wise speedup over the base case for 90nm process technology.

 Average speedup over the base case for different process technologies.

Codec Overhead

		Codec overhead				
Method	# of wires	Area (µm²)	Delay (ps)	Effective delay (ps)	Energy (pJ)	
Base	32	0	0	0	0	
DPack	38	4395	950	560	2.13	
DPerm	34	4361	540	150	1.61	
СРС	53	1758	400	200	1.20	
SHD	63	0	0	0	0	

 Area overhead over the base case for different process technologies.

SHD has an overhead of 100% and CPC has 70%.

Dpack & Dperm significantly low overhead.

Area overhead increased with shrinking process.

- Average speedup of our techniques over the CPC and SHD techniques under the area constraint.
 - Two techniques are compared only if they occupy the same area.

Address Bus

1.7 90nm 45nm ■ 65nm ■ 32nm 1.6 1.5 dnpeeds 1.3 1.2 1.1 DPack Vs DPack Vs DPerm Vs DPerm Vs CPC SHD CPC SHD

18th March, 2007

Conclusion

- DPack and DPerm techniques achieve more than 2.3x (1.5x) and 1.6x (1.4x) speedup, resp., in the address (data) bus over the unencoded bus.
- Though the CPC and SHD techniques are delay efficient in the data bus case, they require 21 and 31 extra wires, resp.
- Under the area constraint, our techniques outperform both CPC and SHD techniques.

