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Overview

• Performance model
• Netlists and signatures
• Partitioning and placement
• Rent exponents
• What do you want to model today?
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Performance model
RISC/CISC

Cycle time (CT)   x  Cycles per instruction (CPI)

1Instructions per second 
(M)IPS

=

Lower CPI → more complex  CPU
      → internal parallelism, 

                     branch prediction, 
                     cache
CISC CPI ≈ 3, RISC CPI<1

10% reduction in CPI → 20-40% increase in circuit count

Larger circuits have longer cycle times
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Performance model
Logic
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Performance model
Electrical

RintL1

RintL2

RintL3

Cg

Rg
Cg

Cg

CintL1

CintL2

CintL3

Rg

RintLav/(tpn-1)

(tpn-1) x CintLav

(tpn-1) X Cg

Fan-out  =   (terminals per net) - 1
=   tpn - 1

Material, geometry,
placement, routing,
metal layer dependent

Material, geometry,
placement, routing,
metal layer dependent

Reasonable
assumption for logic
depth > 10
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Performance model
Elmore delay

Rg

RintLav/(tpn -1)

(tpn-1) x CintLav

(tpn -1) X Cg

τ0-50% = (tpn -1)RgCintLav + (tpn -1) RgCg + 0.5RintCintL2
av + RintCgLav

Lumped elements

Distributed elements
Exact solution to problem in S-domain

But no known inverse Laplace Transform
back to time domain

Vo
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e

Time

First derivative

τ0-50%
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Performance model
Electrical optimization

Cycle time = (logic depth) x τ0-50% + 0.5RintCintL2
max

Lmax
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Performance model
Interconnect optimization

Basic cycle time models provide insight into the complex
interactions which determine cycle time.

Modelling process can also be used to optimise power dissipation
in the interconnect
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Performance model
Predictive capability

• How do we know if benchmark is good?
• Is geometry optimization sensitive to

netlist signature?
• What if layout tools change?
• What if we wish to analyse performance

of a netlist that does not yet exist?
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Netlists and signatures
formats

Node list

P1 N1
P2 N4
P3 N5
C0 N1 N2
C1 N1 N3
C2 N2 N3 N4
C3 N2 N3 N5

P1
C3

C1

C0

C2

P2

P3

N1

N2

N3

N4

N5

Net list

N1 P1 C0 C1
N2 C0 C2 C3
N3 C1 C2 C3
N4 C2 P2
N5 P3C3

Net 2 has 3 terminals per net (tpn)

Cell 3 has 3 nets per cell (npc)
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Netlists and signatures
terminals per net (tpn)
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Netlists and signatures
Nets per cell (npc)
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Netlists and signatures
Terminal counting
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Netlists and signatures
Rent’s rule

∆C
∆T

C
C
T

T ∆





=∆

If an additional ∆C cells are added, what is the increase in terminals ∆T?
In the absence of any other information we might guess that

But this is an overestimate since many of these ∆T terminals may already
connect into larger red structure and so do not contribute to the total.

We introduce a factor ρ (0 < ρ  <1) which indicates how self connected the
netlist is

C
C
T

T ∆





=∆ ρ







≈

C
dC

T
dT

ρ

Or, if ∆C, ∆T are small compared with C and T 

Which may be solved to yield
ρCnpcT =

Where <npc> is the average number of nets per cell, and is generated as a
constant of integration

Statistically homogenous 
system

T

C
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Netlists and signatures
Rent exponents
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Netlists and signatures
Synthetic netlists

RMC (Random Mapped Circuit
Darnauer and Dai
• Top-down recursive partitioning
• Allocation based on Rent’s rule

GNL (Generate NetList)
Stroobandt, Depreitere, and van Campenhout
• Bottom-up clustering approach
• allocation based on Rent’s rule
• Sequential circuits possible

CIRC and GEN
Hutton, Rose, Grossman, and Corneil
• CIRC is an parameter profiler used as input for GEN
• Sequential circuits generated by gluing combinational
circuits
• Not Rent-based

PartGen
Pistorius, Legai, and Monoux
• Two-level hierarchical netlist generator
• first level selects from 4 standard circuits
• second level generates controller logic

Signature invariant mutants
Brgles
• Generated my mutation of real circuits
• mutation maintains wiring signature invariance
• Rent’s rule observed

Random transformations
Iwama, Hino, Kurokawa, and Sawada
• Starts with fixed input NAND gates
• Uses set of 12 transformations to generate any k-NAND
functionally equivalent circuit
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Netlists and signatures
Automatic netlist generation-GNL

• Number of logic blocks and number of
inputs/outputs specified by user

• Logic blocks are paired and (pseudo)-random
connections made between blocks as determined
by Rent’s rule.

• Constant ratio of internal to external
connections at each level

Generates a guaranteed Rent exponent and a realistic tpn distribution
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Netlists and signatures
parameter independence
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Recent paper shows <tpn>,  <npc> and <ρ> are not independent
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Netlists and signatures
Summary

• <tpn> characterizes net fan-out
• <npc> characterizes cell fan-out
• <ρ> is the Rent exponent whose meaning is open for

discussion.
• These parameters may not be independent
• What happens when we embed the netlist into a two-

dimensional surface?
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Partitioning and placement
Sample calculation
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Partitioning and placement
Estimation of length distribution function N(l)

B

B

BB

B B

B

A B B

BB
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C

C

C

C

C

C

C

C

C

C

C

C

BA

C

BA

C

BA

C

BA

C

BA
= + - -

TA→C TAB TBC TB TABC
= + - -

Assumption: net cannot connect A,B, and C

( ) ρ
BAB CnpcT += 1 ( ) ρ

CBBC CCnpcT +=

ρ
BB CnpcT = ( ) ρ

CBABC CCnpcT ++= 1
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Partitioning and placement
Conservation of terminals

( ) ( ) ( )[ ]ρρρρ
CBBCBBCA CCCCCCnpcT ++−−+++=→ 11

We now convert from the number of terminals to
the number of nets using <tpn>

tpnTn CACA →→ =

Assumptions: all nets have <tpn> terminals per net
                     all cells have <npc> nets per cell
                     all terminals in net lie in region A or C

( ) ( ) ( )[ ]ρρρρ
CBBCBBCA CCCCCC

tpn
npc

n ++−−+++=→ 11
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Partitioning and placement
Embedding process (infinite 2D plane)
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For cells placed in infinite 2D plane

lCC 4=

)1(24
1

1

−== ∑
−

=

lllC
l

l
B

( ) ( ) ( ) ( )[ ]pppp
CA llllllllll

tpn
npc

n 4)1(21)1(24)1(2)1(21 +−+−−−+−+−+=→
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Partitioning and placement
Reality check

(1) All cells have <npc> nets per cell
(2) All nets have <tpn> terminals per net 
(3) Net cannot connect A,B, and C
(4) All terminals of net lie in region A or C

(2) is only consistent with (3) and (4) if <tpn> = 2, then nA→C = n(l) and represents
the number of 2-terminal nets of length l associated with a single cell

( ) ( ) ( )( ) ( )[ ]ρρρρ llllllllll
tpn
npc

ln 4)1(21124)1(2)1(21)( +−+−−−+−+−+=

For <tpn> > 2, n(l) is internally inconsistent
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Partitioning and placement
Probability function (infinite 2D plane)

)()( lr
tpn
npc

ln =

We note

( ) ( ) ( )( ) ( )∑
∞

=

=+−+−−−+−+−+
1

14)1(21124)1(2)1(21
l

llllllllll ρρρρ

And so we can write

Where r(l) is the probability that a cell has a  2-terminal net of
length l.
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Partitioning and placement
Approximate form for r(l) (infinite 2D plane)

By expanding individual terms in r(l) as binomial
series we observe the underlying form

( )ρ23)( −−≈′ lKlr

Where K is determined by the requirement that

( )∑
∞

=

−−=
1

231
l

lK ρ

And so we may write

( )ρξ 23
1

−
=K

Riemann zeta function
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Partitioning and placement
Site densities and occupancies (infinite 2D plane)

llqlr 4)()( =

In this context r(l) is interpreted as the
probability that a cell has a net of length l. We
factor it into two parts

 where 4l is the number of available wire sites per
cell of length l  and q(l) is the expectation number
of nets occupying that site. Since q(l) can never be
greater than 1, it may also be interpreted as an
occupation probability

( ) ( ) ( )( ) ( )[ ]ρρρρ llllllllll
l

lq 4)1(21124)1(2)1(21
4
1

)( +−+−−−+−+−+=
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Partitioning and placement
Planar model A

L

L

Finite system, Ctot=L2, no edges,
approximate form for q′(l)

Assume q′(l) retains functional form from infinite plane but now use site
density function for finite cyclic system and appropriate normalization

)()( lrNlN tot ′=

( )ρ
tottottot CC

tpn
npc

N −=
22)( lLlDa =

)()()( lqlDKlr a ′=′ ∑
=

′=
L

l

lr
2

1

)(1
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Partitioning and placement
Planar model B

L

L

( )( )
( )( )( )


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
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
≤≤−−−+−

≤≤−+−
=

else0
2for 312212

1for 361
)(

2

LlLlLlLlL
LllLLll

lDb

Finite system, Ctot=L2, includes
edge effects, use q(l)

)()( lrNlN tot=

( )ρ
tottottot CC

tpn
npc

N −=

Assume q(l) retains functional form from infinite plane but now use site
density function Db(l) and appropriate normalization

)()()( lqlDKlr a= ∑
=

=
L

l

lr
2

1

)(1
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Partitioning and placement
Planar model comparison
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Partitioning and placement
Hierarchical model C

L

L

( )( )
( ) ( ) ( )( )

( )( )( )

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LlLlLlLlL

LlLlLLlllLL
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lDc

At level h there are 4(H-h)

equivalent partitions of side
Lh=2h

 h=1

 h=2

 h=3
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Partitioning and placement
Relationship between Model B and C
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Partitioning and placement
Intra-layer model C

),(),( hlrNhlN
toth=

)(),(),( lqhlDKhlr c= ∑
=

=
hL

l

hlr
2

1

),(1

As before, within each level

where

Only remaining problem is to estimate number of nets in each level, Nhtot

Net distribution for system is given by sum over hierarchies

∑
=

=
H

h

hlNlN
1

),()(
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Partitioning and placement
Inter-layer model C

Number of nets in each layer may be determined by another application of
Rent’s rule. Consider single partition at level h

4h-1 cells
( ) ρ144 −h

tpn
npc

ρh

tpn
npc

4

Four groups of 4h-1 cells generate

One group of 4h cells generate

( ) ρρ hh

tpn
npc

tpn
npc

444 1 −−

Total number of nets in level h partition is

Since there are 4H-h equivalent partitions
( )









−= −− ρρ hhhH

h tpn
npc

tpn
npc

N
tot

4444 1

nets

nets
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Partitioning and placement
Hierarchical model D

Essentially same as Model C but with no intra-layer optimization. Then site
occupancy probability is independent of length and equal to a constant, set
q(l)=K, which is determined by normalization.

As before, within each level

where

),(),( hlrNhlN
toth=

∑
=

=
hL

l

hlr
2

1

),(1),(),( hlDKhlr c=

Net distribution for system is given by sum over hierarchies

∑
=

=
H

h

hlNlN
1

),()(
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Partitioning and placement
Model D average wire length

Simpler mathematical form for Model D enables rare analytical expressions
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Partitioning and placement
Hierarchical model comparison
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Partitioning and placement
Planar and hierarchical model comparison
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Rent exponents
Topology versus Geometry

( )( ) mmmCnpcmtpn TT pp
total

111)( −− −−=

The first use of the Rent exponent was to estimate the distribution of m-pin nets

Topological Rent exponent, now written as pT

Topological Rent exponent inappropriate. Define geometrical
Rent exponent pG . Measure of placement optimization, not an
intrinsic netlist property

( ) ( ) ( )( ) ( )[ ]GGGG pppp llllllllll
l

lq 4)1(21124)1(2)1(21
4
1

)( +−+−−−+−+−+=

But how do we estimate the geometrical Rent exponent?
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Rent exponents
Wiring cell analysis

Let us consider a simple two-level circuit, optimized for
placement

With reference to Nhtot from inter-layer model C we note that

For the above example N1tot=11, N2tot=5 and <tpn> =2.0. Therefore

pG =0.431   <npc>1+2=2.0

pG = +1 4log ξ

npc tpn
N N tpn

Ntot tot

toth
h

1 2

1 2
2

1

2

16 4+
=

=
+

= ∑

or

also
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Rent exponents
Dilation of wiring cell

1 21

npc
tpn

Nh
h

tot1 2 2
1

2

4+
=

= ∑

pG = +1 4log ξ pG = +1 4log ξ

H level systemTwo level system

ξ  is constant if pG is
constant
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Rent exponents
Monte Carlo sampling

Therefore
N N N N

tot tot tot tot2 1 3
2

1= =ξ ξ,  ,  etc.

npc
tpn N

npctot

H
h

h

H H

= =
−
−

−

=
∑1 1

1
14
1
1

ξ
ξ
ξ

For the example wiring cell ξ=0.455 <npc>1=1.375. For a circuit of size Ctot=106

(H=9.966)

pG=0.431 <npc> =2.52

 and so

System defined if we know ξ and <npc>1 

Known a priori
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Rent exponents
Sampling applet
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Rent exponents
Dilational filter

In calculating the Rent exponent we are only interested in details which are
dilationally invariant.

Let probability that a single cell is connected to
another cell at lowest level be q1

Probability of there being a majority of nets within group of four cells is

q1

Probability of connection between groups of four cells at level 2 is

44
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Rent exponents
Non-linear functionality
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Rent exponents
Theory versus experiment

MBC algorithm
1024 cell netsists

MBC algorithm
Monte Carlo Sampling

Majority rule
Renormalization group
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What do you want to model
today?
Cycle time
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Universal placement
model •Layer assignment

•Optimal repeater insertion
•Optimal power dissipation
•Effects of placement
•Effects of wiring signature



What do you want to model
today?

Wiring Signatures
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What are sufficient parameters to
characterize netlists

<tpn>, <npc>, and pT are not
independent
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What do you want to model today?
Universal placement model
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What do you want to model
today?

Rent exponents
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Object oriented approach to
system-on-a-chip integration

Extremely difficult to predict
interconnect resources required to
implement global wiring between
inhomogeneous system blocks

What do you want to model
today?

Heterogeneous systems

51

Global nets require different modeling
techniques


