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Performance model

Netlists and signatures
Partitioning and placement

Rent exponents

What do you want to model today?
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Instructions per second = 1
(M)IPS Cycle time (CT) x Cycles per instruction (CPI)

Lower CP1 ® more complex CPU
® internal parallelism,
branch prediction,
cache
CISC CPI1 » 3, RISC CPI<1

10% reduction in CP1 ® 20-40% increase in circuit count

Larger circuits have longer cycle times ﬁ
2000
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Performance model
Logic




Material, geometry,

placement, routing,

metal layer dependent Reasonable
assumption for logic

Cinel Rinel depth > 10

MW,

I oy o/ (tpn-1)
Rg Cintlz = RinL, — Rg mt
AL A
ey j\>
Coly =R L, — (tpn-1) X Cipelyy
Cg
L L T 1 = 4

(tpn-1) X C,

Material, geometry,
placement, routing,
metal layer dependent

Fan-out = (terminals per net) -1
= tpn-1
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Distributed elements

R,

|nt

(tpn-1) x C, L.,

Lumped elements

t 0-50% —

= (tpn -1)R CInt v

o/ (tpn -1)
(tpn -1) X C,

Exact solution to problem in S-domain

But no known inverse Laplace Transform
back to time domain

First derivative

t 0-50%

e

Time

Voltage

+ (tpn -1) R,C, + 0.5R;, Cinel2,, + R Cil,
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Performance model
Electrical optimization

Cycle time = (logic depth) x t , ,, + 0.5R. C. L2
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Performance model
Interconnect optimization

Gate |ntercgnnect| Distribution | WWiire-0-Matic I Gate | Intercunnectl Distribution | Wire-0-h atic
Intercannect Parameter IWire pitch (feature size) j Interconnect Parareter IWire pitch (feature size) j
Layer 3 (x &) 2.0 Layer 3 (x &) 4.0
Layer 2 (x &) 2.0 Layar 2 (£ &y) 4.2
Layer1 (% &) 20 Layer1 (&) 4.0

Geometry | Piot | Data | Geometry | Plot | Data |

B B
L3 95%
llllllllllllllllllllllll L3 0%
------------------------ L2 15% EEEEEEEEENRN,| 200
llllllllllllllllllllllll L1 100% = " m = o m o= o m o m o m o m = = L1 100%
———— | — =

Clockrate: 363 MHz Clockrate: 413 MHz

Basic cycle time models provide insight into the complex
interactions which determine cycle time.

Modelling process can also be used to optimise power dissipation

in the interconnect [l I
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 How do we know If benchmark is good?

e Is geometry optimization sensitive to
netlist signature?

 \What If layout tools change?

 What If we wish to analyse performance
of a netlist that does not yet exist?
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Netlists and signatures
formats

Net list

N1 P1CO C1
N2 CO C2 C3
N3 C1C2 C3
N4 C2 P2
NS P3C3

Cco

N2

P1

N1

C2

C3

C1

N3

Net 2 has 3 terminals per net (tpn)

Cell 3 has 3 nets per cell (npc)

N5

L{p2

N4

Node list

P1 N1

P2 N4

P3 N5

CO NI N2

C1 N1 N3

C2 N2 N3 N4
C3 N2 N3 N5

1C

P3
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Number of nets

ppone, 25-Feb-2000, <tpn>=2.8686
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Terminals per net (tpn)
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ibm01, 25-Feb-2000, <tpn>=3.5834
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25

SLIP 2000

11



Number of nets

ppone, 25-Feb-2000, <npc>=3.6115

25Q

204

150

10G

5@

1234567 89101112131415

Nets per cell (npc)

Number of nets

npc

ibm01, 25-Feb-2000, <npc>=4.0237

4000

3500

3004
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o o
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1234567 8 9101112131415
Nets per cell (npc)
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Netlists and signatures

Terminal counting
Example netlist 29-Feb-2000

Qo

(@]
@

e

E = i
Number of terminals
)

1 2 3 4 5 6

Number of cells
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Netlists and signatures

Rent's rule

If an additional DC cells are added, what is the increase in terminals DT?
In the absence of any other information we might guess that

DT:?%QDC
ec g

But this is an overestimate since many of these DT terminals may already
connect into larger red structure and so do not contribute to the total.

We introduce a factor r (O <r <1) which indicates how self connected the

netlist is .
pr=r & %c
eCg
Or, if DC, DT are small compared with Cand T

dT  aCo
»I ¢ =
T eCoyg
Which may be solved to yield

Statistically homogenous
system

T =(npc) C'

Where <npc> is the average number of nets per cell, and is generated as a

constant of integration
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Netlists and signatures

Rent exponents

3 ppone, 28-Feb-2000, <r> =0.72 . ibm01, 28-Feb-2000, <r> =0.85
10 B ERT X Bt 0 10
o
c_(g {.,o/"/" i %104 ., 3 L A 4
= ’}.M“ = S
GEJ]-OZ %103 )"’) -
- - :
5 S i
- j - b"
8 . L10E==
£10 =
Z Z |
10
10° 10”
10 10 100 10° 10° 10 10° 10 10'
Number of cells Number of cells
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RMC (Random Mapped Circuit
Darnauer and Dai

» Top-down recursive partitioning
 Allocation based on Rent's rule

GNL (Generate NetList)

Stroobandt, Depreitere, and van Campenhout
* Bottom-up clustering approach

« allocation based on Rent's rule

e Sequential circuits possible

PartGen

Pistorius, Legai, and Monoux

» Two-level hierarchical netlist generator

« first level selects from 4 standard circuits
» second level generates controller logic

1€

CIRC and GEN

Hutton, Rose, Grossman, and Corneil

e CIRC is an parameter profiler used as input for GEN
» Sequential circuits generated by gluing combinational
circuits

* Not Rent-based

Signature invariant mutants

Brgles

e Generated my mutation of real circuits

e mutation maintains wiring signature invariance
* Rent's rule observed

Random transformations

Iwama, Hino, Kurokawa, and Sawada

e Starts with fixed input NAND gates

e Uses set of 12 transformations to generate any k-NAND
functionally equivalent circuit
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______

- Number of logic blocks and number of
inputs/outputs specified by user

 Logic blocks are paired and (pseudo)-random
connections made between blocks as determined
by Rent's rule.

e Constant ratio of internal to external
connections at each level

Generates a guaranteed Rent exponent and a realistic tpn distribution
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Number of nets

1€

Recent paper shows <tpn>, <npc> and <r> are not independent

tpn(m) = (Np)Cyy ((m- 272 - ™)/

ppone, <npc> =3.6115, <I> =0.72 ibm01, <npc> =4.0237, <r> =0.85
30G¢ 9006

800

700

600

500

400

Number of nets

300

200

1000

10 15 20 25 10 15 20
Terminals per net Terminals per net

— o 0
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<tpn> characterizes net fan-out
<npc> characterizes cell fan-out

<r> 1S the Rent exponent whose meaning is open for
discussion.

These parameters may not be independent

What happens when we embed the netlist into a two-
dimensional surface?
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Partitioning and placement

ppone

Sample calculation

10

Partition-based
placement
L,=45

Number

1

10

Minimum length

placement
L,=55
0
10
10° 100
Length

10

Number of nets

2C

104 T
B e Partition-based
placement
10° L,=9.8
10 T
Minimum length i g N
placement e
L,=6.2 ’"
o] |
10
10° 10" .10 10°
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Partitioning and placement
Estimation of length distribution function N(I)

A® c - ABC

Assumption: net cannot connect A,B, and C

T =(npc)(1+Cy)" Tae =(npc)(C, +C. )"

T, :<npc>CB<r> Taec =(NPO)(1+Cy +Cc )"
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TA®C = <npc>[(1+CB)<r> +(CB 'l'Cc:)<Ir> B C|<3r> B (1+ CB +CC)<r>J

We now convert from the number of terminals to
the number of nets using <tpn>

nA®C = A®C/<tpn>

G
A®C <tpn>

Assumptions: all nets have <tpn> terminals per net
all cells have <npc> nets per cell
all terminals in net lie in region A or C

[(1+C,)" +(Cy+Co) - G - (14 G, +Co)|
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Partitioning and placement
Embedding process (infinite 2D plane)

C For cells placed in infinite 2D plane
C B C
C—| B B|B C
C B B AB B C CC =4
C B B B C |61
8 Co= 4 =2(-12

[=1
Mo =<<t”7pnc>>[(1+2I (- D) +@2(- D+4)7 - (20- D) - @+2(- D +4)7]
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(1) All cells have <npc> nets per cell

(2) All nets have <tpn> terminals per net
(3) Net cannot connect A,B, and C

(4) All terminals of net lie in region Aor C

(2) is only consistent with (3) and (4) if <tpn>= 2, then n,, .= n(l) and represents
the number of 2-terminal nets of length | associated with a single cell

n(l) = <<”§C>[1 2(- D)+ (@10 -D+4)0 - @(1- D)7 - @+2AQ-D+a)O]

For <tpn> > 2, n(l) is internally inconsistent
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Partitioning and placement
Probability function (infinite 2D plane)
We note

Q@+2(0-0) 7 +20-n+a) - @A0-D))7 - @+ 20 - +4) =1

¥
o
=1

And so we can write

(npC;)

n(l) = o

r (1)

Where r(l) is the probability that a cell has a 2-terminal net of
length I.

2¢
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Probability

2¢

Partitioning and placement
Approximate form for r(l) (infinite 2D plane)

,_\
1S}
i

=
o
N

o,
~uy

10°

Length (gate pitches)

By expanding individual terms in r(l) as binomial
series we observe the underlying form

rql) » K| &)

Where K is determined by the requirement that

¥
1= é K| -(3-2(r))
1=1
And so we may write

_ 1

x(3- 2(r)) :}—@
%SLI%EME

Riemann zeta function




In this context r(l) is interpreted as the
probability that a cell has a net of length |. We

factor it into two parts

r)=q()4
where 4l is the number of available wire sites per
cell of length | and g(l) is the expectation number

of nets occupying that site. Since (l) can never be
greater than 1, it may also be interpreted as an

occupation probability

q(l) :4—1|[(1+ (- D)7 +(2(- D+a) - (2(- D)7 - (@r20-D+4)"]
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D,(I)=2IL°

2¢

Finite system, C_=L2 no edges,
approximate form for g¢l)

N(I) = Niur )

NpC ]
Ntot = <<tpn>> (Ctot - Ct<ot>)

Assume g€l) retains functional form from infinite plane but now use site
density function for finite cyclic system and appropriate normalization

()=KD,()q()  1=& rdl)
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< > Finite system, C_=L2?, includes
edge effects, use ()
N(I) =Ngr()
' v =M o)
] tot — tot ~ “tot
1(12- 1+6L(L- 1))/3 forLEI £L <tpn>
D, ()=} (2L- 1+2)(2L- 1)(2L-1-1)/3 forLEI£2L
%0 else

Assume ((I) retains functional form from infinite plane but now use site
density function D,(l) and appropriate normalization

r)=KD,Mal)  1=4 r()
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Partitioning and placement
Planar model comparison

Ciot = 1024
<tpn>=2
<npc> =4
<r>=0.66

Model A: L, =4.53
Model B: L, = 2.27

Number of nets

3(

10" ¢
1 03 -
.':\::4'.7-.
. Model A
10°k A
10'F
L (SR -
o ; st :
10
10 101 102
Length
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L
< 4
A
L

v
_i_I(I(2L- 1)+1) forl£l1 £1/2
5 _{(aLl- 12)- B(t- 12)+18LI(L- 1))/3 forL2£1£L
C()_-:-(ZL— l+1)(2L- 1)2L- | - 1)/3 for LEI£2L

t0 ese

h=1

A

HEH

aF

-'ITT|T%‘:I

aF

!

h=3

|
|
" | era

i
Ill ]

-+

At level h there are 4HN
equivalent partitions of side
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Partitioning and placement
Relationship between Model B and C

2}(10
hfae%e—//////////// Dy(1)
1.5¢ ’ | “X“
8 H-n
5 D(1,h) D,()=84 4" "D.(,h)
= h=1

05 |

0 10 20 30 40 50 60 70
Length
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Partitioning and placement
Intra-layer model C

As before, within each level
N(,h) =N, r(l,h)

where
2L,

rd,h)=K D,(I,hql) 1=§ r(,h)
1=1
Net distribution for system is given by sum over hierarchies

N() =& N(,h)

h=1
Only remaining problem is to estimate number of nets in each level, N, ,
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37

Number of nets in each layer may be determined by another application of
Rent’s rule. Consider single partition at level h

cells

(nPS) ey

(tpn)
NPC) (-1
Four groups of 41 cells generate 4<<tTpn>> 4i-1r) - nets
Total number of nets in level h partition is

29) ey (OPE) oy

(tpn) (tpn)

Since there are 4"-h equivalent partitions
2 (NPS) ey (C) o) ©

:4H-h 4— -
o (tpn) (ton) ¢

One group of 4" cells generate nets

N
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Essentially same as Model C but with no intra-layer optimization. Then site
occupancy probability is independent of length and equal to a constant, set
g(1)=K, which is determined by normalization.

As before, within each level

N(,h) =N, r(l,h)
where 2L,
o
r(l,h) =K D.(I,h) 1=a r(.h)
1=1
Net distribution for system is given by sum over hierarchies

N() =& N(,h)

h=1
?{%ﬂ]ﬂﬂ ]
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Partitioning and placement
Model D average wire length

Simpler mathematical form for Model D enables rare analytical expressions
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Partitioning and placement

Hierarchiral mndal rnmnarienn

4

Ctor = 1024 | - Model D
<tpn>=2 ”‘ R ,
«r>=0.66 - o. |

Model C: L, = 2.05

Number
[N
o

Model D: L, = 5.14 | -

- T 5
107 R B >

' e

. T B

. T

ModelC | ¥ =
0 g : < R & i'f::j::j:j;j:j;j:j:j:' m drrenmahss et
10 0 1 2

10 10 10
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Partitioning and placement

Planar and hierarchical model comparison

-~ Model A

Number of nets

[N

=
o

Model B

10
10

10"

Length

3¢

10" PESSSSSSSS
- Model D
10°E:
[+ 39
5 L M
a 5 B
€10
3 Oy,
Q""‘ﬂ
o,
ooy,
101 - “—}%% i
Model C PR
, 10 B
10 10 10° 1o’
Length

Models B (planar) and C (hierarchical ) are sometimes equivalent

SLIP 2000 ]



The first use of the Rent exponent was to estimate the distribution of m-pin nets

T

tpn(rm) = (MPC)Ciga (M- 1) - P

Topological Rent exponent, now written as p;

q() = %[(1+ 2(-1)% +(2(1-D+41)> - (2(-12))- @+2( - 1)+4|)pe]

Topological Rent exponent inappropriate. Define geometrical
Rent exponent p;. Measure of placement optimization, not an

Intrinsic netlist property
?{%ﬂ]ﬂﬂ ]

But how do we estimate the geometrical Rent exponent?
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R I
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1
-

| .

g
L

4(

Let us consider a simple two-level circuit, optimized for
placement

With reference to N, from inter-layer model C we note that

X = Ny, — 4 @ ) or p; =1+log,x

For the above example N, ,=11, N,,,=5 and <tpn> =2.0. Therefore

P =0.431 <npc>,,,=2.0
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2

=)

[,

NT —

H

N

o —&
00— O

M

I

Two level system

tpn) &
mpc),., =TGN,
h=1
ps =1+log, x

H

(npc) =

H level system

npe).,., =

ps =1+log, x

X Is constant if pg is
constant

_—

4]
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Therefore
N2t0t :X Nltot’ N3t0t _X2N1tot, etC.
and so
<tpn>N]1 & h1 1- x"
NPC) = = X T =(NpCc), ——
() = =8 X = (pe), 5=

System defined if we know x and <npc>,

For the example wiring cell x=0.455 <npc>,=1.375. For a circuit of size C=10°

(H=9.966)
?{%ﬂ]ﬂﬂ ]

Known a priori

Ps=0.431 <npc> =2.52



Rent exponents
Sampling applet

2 Java Wiretools - Netscape

File Edit Yew Go Communicator Help

SLIP 99 Rent Exponent Estimator Applet

Parameterl Cptimmization | Maonte Carlo |

| il
08
07f
Jasit| Giear| " 0o
0.5]

= [=P=|
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In calculating the Rent exponent we are only interested in details which are
dilationally invariant.

th

Let probability that a single cell is connected to
another cell at lowest level be g,

Probability of there being a majority of nets within group of four cells is

g, +6q;(1- 0,)+15¢ (1- q,)°

Probability of connection between groups of four cells at level 2 is
“ 2
0, =A[q] =|a¢ +607(1- 6,)+15¢°(1- q,)|
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0.8}

0.2}

o

0.2

0.8

PG, = tpn, 4 Ch

X and <npc> expressed
parametrically in terms of q,
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MBC algorithm

Rent exponents
Theory versus experiment

Majority rule
Renormalization grou

4¢

1024 cell netsists

0.8y

o©
o
T

o
=N
T

Rent Exponent, p

0.2y

| 1
o © ©
(o] -
a

o
o
T

©
N

Rent exponent, p

0.2

0.8 \o
(e}

MBC algorithm
Monte Carlo Sampling
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What do you want to model
today?

Cycle time

Unilversal placement
model eLayer assignment

{ *Optimal repeater insertion

*Optimal power dissipation

| eEffects of placement

eEffects of wiring signature
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Number of nets

4¢€

tor(m) = (NpAIC,y ((m- )< )2

ppone, <npc> =3.6115, <I> =0.72

10 15
Terminals per net

20

25

What are sufficient parameters to
characterize netlists

<tpn>, <npc>, and p; are not
independent
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N()=Ka Ny, D.(l,ha()

h=1

Ps = Ps Model B
Ps ! Ps Model C

P: =1(g = K) Model D

q(l) = 41—|[(1+ 21(1 - 1) +(21(1 - 1)+ 41) - (210 - 1)) - @+ 21( - 1)+4|)pG]
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What do you want to model
today?

Rent exponents

oC
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What do you want to model
today?

Heterogeneous systems

Object oriented approach to
- system-on-a-chip integration

Extremely difficult to predict

interconnect resources required to

implement global wiring between

Inhomogeneous system blocks

Global nets require different modeling

techniques
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