Energy Efficient High Speed On-Chip Signaling in Deep Submicron CMOS Technology

> I.Ben Dhaou and H.Tenhunen. Royal Institute of Technology, Dept. Of Elect., ESDLab, SE-164 40 Kista, Sweden

Outlines

Design challenges in Deep-submicron CMOS ^COur Approach to tackle DSM effects Problem formulation and Related work [©]Current mode MVL ^CQualitative analysis of the On-Chip Interconnect (OCI) ^CEnergy-efficient signaling Simulation results ^CConcluding remarks

DSM: opportunities and challenges

L (µm)	Tox	Vdd	Vt	Line	Width	Sheet	Tins	Dielectric
	(A)	(111 V)	(111 V)	thicknes	and	resistan	(in µm)	constant
				s (µm)	spacing	(\mathbf{O}/\mathbf{O})		
0.25	50	2.5	0.625	0.5	0.3	0.044	0.65	3.3
0.18	40	1.8	0.450	0.46	0.23	0.048	0.5	2.7
0.12	20	1 2	0 275	0.24	0.17	0.075	0.26	22
0.15	30	1.5	0.375	0.34	0.17	0.005	0.30	2.3
0.10	25	1.2	0.3	0.26	0.13	0.085	0.32	2
0.07	20	0.9	0.225	0.2	0.1	0.11	0.27	1.8

D. Sylvester et al., "Rethinking Deep-Sumbicron Circuit Design", Proc. Comp. Nov.99

Contd., Main Disadvantages

- Static power is increasing
- Increase of the digital noise
- Reduced drive current, $I \gg C_{ox} W V_{sat}(Vdd-Vt)$
- Delay and power caused by the interconnect is getting more dominant
- Increased design-complexity

P

Our approach to tackle DSM effects

How can I get around DSM effects to achieve GSI *without using expensive or special process*?

> Use a *signaling scheme* that is <u>robust</u> against DSM noise and allows for <u>low-</u> <u>power, high-speed</u> communication between digital blocks!

On-chip signaling in DSM

Problem formulation

Problem Formulation, Contd.

Let $\gamma ij = Watts/Ri$, the quantity that measures the power efficiency. For each communication from *j* to *i* at a rate *Rij*, our objective is to solve the following optimization problem.

Minimize *yij* subject to

1) The achievable data-rate, from j to i, is equal to *Rij*

2) Bit-Error-Rate, *BERij* <=τ

Our solution to solve **OPT**

Related work

• Most reported techniques are based on reduced-voltage swing signaling with repeaters insertion.

R. Yoshimura et al.,"DS-CDMA Wired Bus With Simple Interconnection Topology for Parallel Processing System LSIs", Proc. ISSCC, Feb.2000

On-chip interconnect (in DSM)

Modeling of the OCI

Capacity of the OCI

Shannon-Capacity of the OCI

j •Blog₂(1+P/(BN₀)), B: bandwidth, P: symbol power, N₀: PSD of the AWGN

N₀ is a function of 1) Fundamental noise 2) Cross-talk noise 3) Power-supply noise 4) Leakage noise, 5) Charge-sharing noise etc...

Upper-limit: **j** ^oBlog₂(1+P/(BKT)),

K: Boltzmann's constant, T: Device temperature

Voltage mode CMOS: Binary techniques

Generalization: Multi-valued voltage mode

$$R_{b} = 2\log(M) \left[B = \beta \left[\frac{0.56w^{2}}{\pi^{3}d^{4}\pi\mu C^{2}} \right]^{1/3} + (1-\beta)B_{2} \right]$$

Robust signaling (*current vers*. <u>Voltage</u> mode)

- Robust against power supply noise
- It has lower g
- Easy to generate multiple current sources without the need for DC-converters
- Better *noise immunity*
- Lower delay
- Widely used for off-chip signaling
- ButMixed signal design

Ref, W. J. Dally et al,"*Digital Systems Engineering*", Canbridge univ. press

Scenarios for high-speed signaling

E-VIJIM algorithm

For a given N_0 , T_b , d, w, M_{max} , I, ρ , w, h, s, R_d , L and C

```
s=<>; /* The solution is initialized to NULL */
compute B
M=2, compute R_d denote this by R_b
if (Rb \le Rd)
       Compute d_{min} by setting R_d = R_b
       Compute K (number of regenerative repeaters)
       for k=1:K
             Compute I<sub>max</sub>
             Compute \gamma_{d,b}
             Save the results to s
             Goto end-E-VIJIM
     Compute M
     Compute I_{max} and save the results to s
     Goto end-E-VIJIM
else
    compute I_{max} save the results to s
end E-VIJIM:
Select the minimum solution from S. If the value of I_{max} is more than I then
print an error.
```

Experimental results (Metal-2)

conf. v	v(µm)	h(μm)	s(µm)	L(H/m)	C(F/m)
CF1	0.13	0.26	0.13	3.30E-07	7 1.56E-10
CF2	0.86	1.72	0.86	1.92E-07	2.40E-10
d (mm)	fmax	h(GHz)	fmax(G	Hz)	error
0.1		250	24	48.3	0.68%
0.2		50	48	3.24	3.64%
0.4		11		10	10%
0.5		6.4	e	6.29	1.74%
0.6		4.4	2	1.32	1.85%
0.7		3.2	3	3.15	1.58%
0.8		2.5		2.4	4.16%
1		1.59	1	1.53	3.92%
2		0.3	C	0.38	21%
3		0.16	C	0.16	0%
4		0.09	C	0.09	0%
5		0.06	C	0.06	0%
6		0.042	C	0.04	5%
7		0.032		0.03	6%
8		0.024	Ο.	023	4%
9		0.019	О.	018	5%
10		0.0156	Ο.	015	4%

Contd. (Metal-6)

d (mm)	fmaxh(GHz)	fmax(GHz)	error
0.1	348	477	27.00%
0.2	168	189.3	11.25%
0.4	80	75.12	7%
0.5	63	55.79	12.90%
0.6	50	43.75	14.28%
0.7	43	35.62	20.71%
0.8	37	29.81	24.11%
1	29	22.142	30.98%
2	12	8.78	37%
3	7	5.11	37%
4	4.14	4.12	0%
5	2.32	2.28	2%
6	1.45	1.45	0%
7	1	1	0%
8	0.73	0.74	1%
9	0.56	0.57	2%
10	0.43	0.46	7%

Concluding remarks

- Techniques for using M-CMVL current mode energy efficient highspeed signaling over onchip interconnect were presented.
- An analogy between onchip signaling and digital communication over bandlimited channel was reported.
- A algorithm for computing channel capacity of the on-chip interconnect was derived.
 Our algorithm has an average error less than 10%
- A pseudo-code for fast searching of the energy efficient signaling was derived.

Contd.

- Implementation of E-VIJIM shows that up **to two times** improvement in power can be achieved if four current levels are used for on-chip signaling.
- Over 1.4 times areaimprovement has been achieved.

4-CMVL is the most promising candidate for signaling over long-on chip interconnect.

 <u>Bottleneck</u>: Mixed Signal Design

Currently, encoder-decoder is being implemented. The results will be submitted to the special issue of "onchip signaling in DSM", Journal of Analog Integ. Circ. And Sig. Process.