Hierarchical Power Supply Noise Evaluation for Early Power Grid Design Prediction

M. Graziano, G. Masera, G. Piccinini, M. Zamboni

VLSI LAB. - Electronics Dep. - Politecnico di Torino

Outline

Outline

- **♦ Power Supply Noise**
- Power Supply Noise AnalysisApproaches
- Proposed methodology
- Results and conclusions

Power Supply Noise

$$\overline{m{v}}$$
 $V_{suppy} \Rightarrow V_{ideal}$

Power Supply Noise

$$V_{suppy} \Rightarrow V_{ideal}$$

$$\mathbf{SSN} \Rightarrow L \cdot rac{dI}{dt}$$

Power Supply Noise

$$lackbox{0.5}{$$

$$extstyle extstyle ext$$

Voltage Drop $\Rightarrow R \cdot I$

Power Supply Noise

$$\overline{m{c}}$$
 $V_{suppy} \Rightarrow V_{ideal}$

$$\delta$$
 ssn $\Rightarrow L \cdot rac{dI}{dt}$

Voltage Drop $\Rightarrow \ R \cdot I$

$$V_{suppy} = V_{ideal} + L \frac{dI}{dt} + R \cdot I$$

Resistance

Metal line shrinking

Skin effect

Temperature

Resistance

Metal line shrinking

Skin effect

Temperature

Copper

Fat wires

Inductance

Higher frequency

Complexity: return path

Inductance

Higher frequency

Complexity: return path

Shielding

Flip Chip technology

Current

Gate density increasing

⇒ higher currents

Higher frequency

$$\Rightarrow \frac{dI}{dt}$$
 grows

Capacitance

Fat wires

⇒ interconnect capacitance increases

Reduced gate sizes

⇒ reduced intrinsic decoupling

capacitance
$$\Rightarrow rac{dI}{dt}$$
 grows

Capacitance

Fat wires

⇒ interconnect capacitance increases

Reduced gate sizes

⇒ reduced intrinsic decoupling

capacitance $\Rightarrow rac{dI}{dt}$ grows

Low $oldsymbol{K}$ materials

Effects: direct

Gate delays, errors, failures

Effects: indirect

Substrate injection

Effects: indirect

Crosstalk against signal lines

Effects: indirect

Emi towards neighbours circuits

Countermeasures

- ♦ Technologist: copper, Low-k, SOI, C4
- ♦ Circuit designer: decoupling capacitors, current limiters, logic family variation
- Physical designer: routing and placement strategies
 - ⇒ early PSN evaluation

Power Supply Noise Evaluation Approaches

- Verification at the end of the design process: accurate but expensive
- ♦ Early analysis: has lower accuracy but gives a priori design parameters

PSN evaluation

Power Supply Noise Evaluation

Power Grid
Modeling

Current Analysis

PSN Analysis

PSN evaluation

Power grid analysis approaches

- ♦ Hierarchical analysis
 - ♦ Extract parasitics of a macro power grid
 - ♦ Simplify it in a concentrated model for that macro
 - ♦ Use it for the higher hierarchical analysis
 - ♦ Can be extremely inaccurate: the distributed effect is lost

Current analysis approaches

- ♦ Vector producing worst switching activity
 - \Rightarrow maximum switching $\not\equiv$ worst noise
- ♦ Simultaneous switching
 - \Rightarrow too pessimistic upper bound
- ♦ Static timing analysis for current skew evaluation
 - ⇒ too pessimistic: does not consider switching direction

Proposed method base on:

- Hierarchical current activity algorithm:
 - uses dynamic current informations (database)
 - consider switching direction
 - **♦** consider current skew
 - ♦ consider current in "no-switching" transitions
- Hierarchical Power Grid model
 - ♦ Infer distributed parasitic informations from lower to higher hierarchical levels
 - Include current informations for line sizing, parasitic evaluation and Power Supply Noise estimation

PSNA

- 1. Define current activity (Current LUT, CAA, STA):
- 2. Define parasitics from line dimensions;
- 3. Compute power supply overvoltage (Model);
- 4. Define critical points;
- **5.** Define possible solutions:
- 5.1 Increasing critical points line width or/and
- 5.2 Inserting decoupling capacitances or/and
- 5.3 Equalizing current injection (placement, TDP)

Currents: library database

- ◆ Each library cell is simulated in all possible input transition state (implying or not output transition): current is measured
- ♦ Current activity types are <u>clustered</u>, <u>coded</u> and a <u>sample</u> is found
- ♦ A Look-up-table is generated for each input transition state

from
$$V_{in}
ightarrow V_{out}$$

to
$$I_{in}
ightarrow I_{out}$$

Currents: hierarchical analysis

Currents: hierarchical analysis

Currents: activity evaluation

Power grid: MACRO

Macro m, K rows

Power grid: ROW

$$V_{rN} = V_{r0} + N \mathbb{R}_r I_{rIN}$$

$$+N\mathbb{L}_rrac{d}{dt}I_{rIN}+\mathbb{R}_r\sum_{i=1}^Nigg(iig(I_{gi}-I_{ci}ig)ig)$$

$$+\mathbb{L}_r \sum_{i=1}^N \left(irac{d}{dt}(I_{gi}-I_{ci})
ight)$$

Power grid: MACRO

$$V_{kK} = V_{k0} + K \mathbb{R}_k I_{kIN}$$

$$+K \mathbb{L}_k rac{d}{dt} I_{kIN} + \mathbb{R}_k \sum_{i=1}^K igg(i ig(I_{gi} - I_{ci}ig)igg)$$

$$+\mathbb{L}_k \sum_{i=1}^K \left(irac{d}{dt}(I_{gi}-I_{ci})
ight)$$

Power grid: BLOCK

$$V_{mM} = V_{m0} + M\mathbb{R}_m I_{mIN}$$

$$+ M \mathbb{L}_m rac{d}{dt} I_{mIN} + \mathbb{R}_m \sum_{i=1}^M igg(i ig(I_{gi} - I_{ci}ig)igg)$$

$$+\mathbb{L}_{m}\sum_{i=1}^{M}\left(irac{d}{dt}(I_{gi}-I_{ci})
ight)$$

Conclusions

Methodology results and conclusions

- ♦ Results for non automated evaluations on a two macros block with 25 gates each showed with respect to HSPICE simulations
 - ♦ accuracy in current waveform evaluation of 98%
 - accuracy in worst power supply noise evaluation of 85% due to parasitic modeling
- Needs final implementation for managing complex circuits and benchmarks
- ♦ Need further improvements in parasitic modeling
- ♦ Expected good results in terms of accuracy and efficiency