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ITRS Power Fashion Statement
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Motivation
Power is increasing (hot plates, nuclear reactors etc…).

VDD is decreasing (VTH decreasing slower to manage leakage).

Frequency is increasing.
Dynamic and static IDD are increasing (electromigration!).

IR and Ldi/dt noise becoming a larger part of the total 
noise budget.
Impact of VDD variation on delay is increasing.

(Because of reduced overdrive VDD-VTH)

Understanding the origins and trends of supply 
induced noise becoming critical.
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Leakage Current “Predictions”
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Outline
Expressions for power grid induced noise.
Technology trends.

Design realities and trends…
Power Grid Planning.
Power Grid Planning Examples.

Open issues and low-hanging fruit.
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Canonical Power Grid Circuit
Grid is predominantly resistive.
Package is predominantly inductive.
Load is current.
Other circuits ~ lossy decoupling capacitance.
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Grid Capacitance
Capacitance ~ 1/distance.

Distance scale for power grid is in the range 
of 10µm.

Distance scale for device capacitance is in the 
range of TOX ~ 20nm.

Capacitance “density” of devices makes grid 
capacitance unimportant.
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Grid Inductance
Rectangular Conductor…
Worst case for grid wire.
L(pH) ~ 0.2 l ln(2l/(w+t) + 0.5)
Package parasitics much greater.
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Grid Resistance
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Noise Model
Current modeled as:
I = 0 t < 0
I = µt t < tp
I = µ(2tp-t) t < 2 tp

I = 0 t > 2 tp

Ignoring L, maximum noise is:
Vmax= µ tp Rg – µ R2

g Cd (1 – e-tp/τ)

τ = (Rg + Rd) Cd

VDD
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DC Decap

l µ tp Rg / (Rg + Rd)
(for large Cd)
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VDD

+
Rg

Rd

Cd

LNoise Model + L

With package, maximum noise becomes:
Vmax l µ tp Rg + µL – µ R2

g Cd (1 – e-tp/τ)

Accurate expression:
Vmax = µ tp Rg + µL – µ R2

g Cd + ψ1 + ψ2

e1 = exp –(τ+β)tp/2CdL e2 = exp –(τ–β)tp/2CdL
β = (τ2 – 4LCd)½

ψ
1 = (e1 + e2) µ (L – Cd Rg

2) / 2
ψ

2 = (e1 – e2) µ Cd (τ Rg
2 – L(3Rg-Rd)) / 2β

DC DecapPackage
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Quality of Approximation
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Outline
Expressions for power grid induced noise.
Technology trends.

Design realities and trends…
Power Grid Planning.
Power Grid Planning Examples.

Open issues and low-hanging fruit.
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Technology Variables
We need to find trends in the parameters of 
our canonical model.
Roadmaps provide insight into VDD, Area, 
Power, Frequency etc…
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Technology Parameters
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Dependencies
Time tp ~ F-1

Power density P ~ VDD µ tp → µ ~ F P / VDD

Cd ~ COX ~ 1/TOX

Rd and Rg are ~ constant
But proper power grid planning can make a 
difference here!

L is ~ constant
Package learning curve is much shallower 
than technology learning curve!



17

VDD
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Vmax l µ tp Rg + µL – µ R2
g Cd (1 – e-tp/τ)

DC DecapPackage

~Same

Plus ~ 1.7X due to reduction in VDD
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Outline
Expressions for power grid induced noise.
Technology trends.

Design realities and trends…
Power Grid Planning.
Power Grid Planning Examples.

Open issues and low-hanging fruit.
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Power Grid Design Trends
Number of levels of metal is increasing.

More degrees of freedom for tradeoff 
between interconnect and power.
More effort in grid design.

Cu and advanced CMP processes place more 
design restrictions on wires.

Example: maximum width, metal density, 
oxide density within metal area, etc…

Number of package power pins for high power 
chips increasing (fixed Imax per pin).
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Package Choices

Area Array (C4)
Power distributed across 
all the chip area.

Wirebond (periphery)
Power brought in from 
edge of chip.
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SOC and IP Constraints
Hard IP places constraints and creates 
discontinuities in grid design.
Often dealt with using “rings” (area hit).

Ring

Hard IP
Block
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Power Grid Design Issues
Power Grid impacts implementation of every 
component at the PD level.
Placement of power-hungry devices (I/O 
buffers, clocks, etc…).
Placement and allocation of decoupling 
capacitors to minimize noise.
“Interface” between incompatible power 
distributions costly in routing resources.

It is not unthinkable to use 15 to 20% of 
wiring resources for power distribution.
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Buffer Placement Algorithm
ICECS ‘00 paper (J. Kozhaya et. al.)

A greedy heuristic technique.
Idea: Use sensitivity information to place I/O 
buffers one at a time while satisfying drop 
thresholds.
The A-1 (system matrix) provides sensitivity of  
voltage drops to placement of I/O buffers.

I/O buffers only appear in the RHS of the 
system of linear equations!
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Algorithm Description
1. Sort I/O buffers and initialize drop slacks.
2. For buffer Bk, compute upper bounds on the 

allowable current at every node ni which is a 
potential placement site.

3. Assign buffer Bk to node nm where nm is the 
node with the largest upper bound.

4. Update the drop slack at all nodes:
s(j) = s(j) – ajm

-1 Ik, ≤j

5. If s(j) < 0, report a violation at node nj.
6. Continue at step 2 with the next buffer.
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Results

3.0403325588C2 (0.13µ)

3.7904602616C1 (0.18µ)

CPU TimeViolations# Nodes# BuffersDesign

Technique finds a feasible placement.
CPU time is fast enough for iteration.
Results were verified using detailed 
simulation.
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Is This an Easy Problem?
Results of placing the I/Os randomly with 1.0% drop 
thresholds:

0 250 500 750 1000 1250 1500
0

50

100

150

200

250

300

Number of violations

F
re

qu
en

cy
 o

f n
um

be
r 

of
 v

io
la

tio
ns



27

Decoupling Capacitance Sizing
Upcoming DAC’02 paper (H. Su et. al.)

After optimizationBefore optimization
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Impact of Decap Sizing
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Power Grid Planning
Power grid is usually designed BEFORE
detailed implementation has started.

Predefined “Image” for ASIC or SOC 
implementations.
“Tile” based image for custom ICs.

Grid is defined at a time when the spatial 
information about power requirements is 
approximate, therefore rampant overdesign!
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IBM Power Grid Planner

Spreadsheet-like 
interface to define 
overall power grid.



32

IBM Power Grid Planner
Lots of Visualization and Analysis…
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IBM Power Grid Planner
Usually used to explore design options very 
early in the design cycle.
Tool needs to be very fast (interactive).

Typical questions:
Can a grid with X% density handle P watts 
per square mm?
How much decoupling capacitance does an 
I/O buffer need? How close does it need to 
be?
How much do I gain by introducing skew?
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Outline
Expressions for power grid induced noise.
Technology trends.

Design realities and trends…
Power Grid Planning.
Power Grid Planning Examples.

Open issues and low-hanging fruit.
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Planning Examples
Question:

What is the impact of wiring resources on a 
per layer basis?

Methodology:
Perform a full factorial experiment varying 
wiring density on each level from 5% to 20% 
and measure grid performance.
Build a statistical model of grid performance 
vs. layer densities.
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Experiment
7 level metal process.
Top level fixed to interface to package C4’s.

Density ~ width/pitch.
Pitch goes up by 2X every 2 layers (1,1,2,2,4,4)

46 = 4096 simulation ~ 10 hours CPU time.

Measure VDD and GND net statistics.
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Example of Results
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Analysis of Results
Linear regression of noise vs. layer densities.

name vddmax vddmean gndmax gndmean
rho 0.948 0.941 0.939 0.935
range 0.0527,0.1804 0.0364,0.1142 0.0360,0.1296 0.0182,0.0585

K 0.18164 0.12115 0.12010 0.05549

d0 -0.02428 -0.00001 -0.02616 -0.00520
d1 -0.10201 -0.03502 -0.13665 -0.06095
d2 -0.02937 -0.00537 -0.02764 -0.00739
d3 -0.12701 -0.06568 -0.13211 -0.06287
d4 -0.05253 -0.03394 -0.02857 -0.00947
d5 -0.39699 -0.33490 -0.13706 -0.06973

Directional 
dependence! 
(anisotropy)
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Outline
Expressions for power grid induced noise.
Technology trends.

Design realities and trends…
Power Grid Planning.
Power Grid Planning Examples.

Open issues and low-hanging fruit.
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Open Issues
Coupling of power and timing results.

Some early results, but nothing real yet!

Fast modeling and prediction of chip/package 
resonance.

Approximations OK, but better numerical analysis can make 
results more accurate.

Vector-less Chip-level power estimation.
Most design flows are not yet focused on power. Need a 
method to jumpstart power analysis.

Coupling of power and thermal results + 
impact on reliability.

Same math, same inputs…
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Low Hanging Fruit
Improved modeling of load currents and 
decoupling capacitance.

Holistic rationalization of accuracy requirements.

Integration of placement aspects of PD with 
power grid analysis.

Moving loads around can be done very efficiently (new RHS 
and forward/backward solver of existing LU factors).

Use of sparse inductance formulations to 
speed up chip/package analysis.

Reuse of existing simulation infrastructure.
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