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Motivation

 Today’s largest FPGAs are “hot”

— consume watts of power

 Xilinx Virtex-1l CLB: 5.9 yW/MHz [Shang02]
 Modest design: 2500 CLBs, 100 MHz - 1.5W

e Optimize FPGA power consumption:
reduce cooling/packaging costs,
new apps, better reliability

Characterize, then optimize




FPGA Power Dissipation

e Power breakdown:
— Majority is dynamic
— Interconnect dominates:

o Xilinx Virtex-1l: 50-70% of power dissipated in
Interconnect [Shang02];
similar results: [Poon02, Kusse98]

— Average dynamic power:

Py = 1zcmrm/2

2 i Onets \
/ T supply voltage

capacitance toggle rate (switching activity)




Switching Activity
 Different views:
— zero delay activity: all dlys are zero
— logic delay activity: logic dlys only
— routed delay activity: both logic/routing dlys

e Delays Introduce glitches: spurious
transitions that consume power
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Motivation

o Activity analysis (part 1 of this work):
— Study extent of activity change due to glitches

— FPGA delays dominated by interconnect -
severe glitching in this technology?

— Low-power CAD based on zero delay activities -
valid for FPGAs?




Motivation

o State-of-the-art FPGAs can implement
complex systems with millions of gates

— Design teams, not just individuals
— Increasingly long design cycle

o Early, high-level power estimation:
minimize design time & cost




Motivation

e Layout Is most time-consuming part of
~-PGA CAD flow.
* Pre-layout power estimation requires:

— Net capacitance prediction

— Net activity prediction (part 2 of this work)




Activity Analysis
e Simulation-based approach
 Map 14 circuits into Xilinx Virtex-Il

e Simulate with zero’ed delays,
logic delays, routed delays

e 2 vectors sets: high or low input activity

— high (low) activity vector set:
each input has 50% (25%) probabillity of
toggling between vectors




Activity Analysis Flow
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Effect of Glitching on Transition Count

High activity vector set results:
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Activity Analysis

o Substantial activity increase when
routing delays are accounted for

— Accounting for logic delays is not enough --
iInterconnect dominates delay

— High activity vector set:
e act. incr. zero - logic: avg: 28%, max: 84%
 act. incr. logic - routing: avg: 34%, max: 61%
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Effect of Glitching on Transition Count

Low activity vector set results:
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Activity Analysis

e Low activity vector set glitching 1/2 to
2/3 as severe as high activity vector set
— Fewer inputs switch simultaneously -

fewer simultaneous transitions on different
paths to net

— act. incr. zero - logic: avg: 20%, max: 66%
— act. incr. logic - routing: avg: 19%, max 35%
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Effect of Delay Optimization

e Previous results: P & R run without
performance constraints

e Timing-driven P & R may lead to
smaller interconnect delays -
less glitching?
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Effect of Delay Optimization
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Activity Prediction

* Problem difficulty:
— How “hard” is the prediction problem?

— What degree of accuracy can be
expected?

e Gauge “noise” in the prediction problem
using a specially-designed circuit
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Problem Difficulty

* Regular circuit: ?ﬁgf;ﬁﬂs

4-input AND
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e Has structural & functional regularity
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Problem Difficulty

* Implement “regular” circuit in Virtex-|

« Analyze activity increase on LUT output
signals from zero to routed delay sim.

 Variabllity in increase (across LUTS)
due to delays known only after layout:

— routing delays
— different input-to-output LUT delays

Represents noise we cannot predict

18



Problem Difficulty
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Problem Difficulty

« Variabllity in activity increase significant:
— 0-40% (low activity vector set)
— 0-100% (high activity vector set)

e Accurate pre-layout activity prediction
for FPGAs Is a difficult problem
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Activity Prediction

* Predict net glitching using zero (or logic)
delay activity, circuit properties
 |dea: glitches propagated or generated

Abstract view: { glitch
a
LUT — , B

propagated glitch

a I
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generated glitch
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Generated Glitches

 FPGA logic elements are uniform,
have equal drive capabillity

e Buffered routing switches — connection
delay approx. fanout independent

* Predict pre-layout path delay using
path length (# of LUTS)

jg; Unequal path delays lead to glitches
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Generated Glitches

e Let PL(X) = set of path lengths to node X

e Define # of path lengths introduced by
node y:
IPL(y)= min {[PL(y)[-[PL(x;) [}

Xj Uinputs(y)

@ PL(y) = {5,6,7}, IPL(y) = 1

PL(a) = {5,6} e Q PL(b) = {4,5)
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Generated Glitches

gen(y) =IPL(y) +} Eier;th(y)

depth of node driving net y

* Depth term included since glitching
likely to be worse for “deeper’” nodes
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Propagated Glitches

* Propagate term uses notions of
Boolean difference & static probabillity

e Consider logic function: y =f(Xy,X5,...,Xp)
» Boolean difference of y w.r.t. x, =

0
y =f, Ofy
& function f(...) with function f(...) with
‘ x; replaced by 1 x; replaced by 0
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Propagated Glitches

« Key: — =1 - transition on x; will cause

| transition ony

o Static probability: fraction of time
logic signal Is In “1” state

P

0y I probability a transition on x; will
X; [ result in transition on y

e Relevant to whether a glitch on x; will

become a glitchony 2



Propagated Glitches

s pHY E]Jredict(xi)ﬁa(xi)
orop(y) = x;inputs(y)  [PX| _

0
s pPEY E}a(xi)
x;Oinputs(y) [OX

» za(x;) = zero delay activity of x
— replace with logic dly activity (if available)
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Experimental Methodology

e Divide 14 circuits into 2 groups:
characterization circuits and test circuits

1) Tune model for specific CAD flow &
device using characterization circuits

2) Apply model to predict activity In
test circults
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Experimental Methodology

e Two prediction scenarios:
— predict routed dly activity from zero dly act.
— predict routed dly activity from logic dly act.

« Static probability, zero/logic activity
extracted from simulation

— parameters can also be computed using
probabilistic approaches
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Model Tuning

» High activity vector set simulation of characterization circuits
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Results

Prediction from zero delay activity data:

zero dly act routed dly act
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Results

Prediction from logic delay activity data:
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Results

Error histogram for zero delay activity, predicted activity:
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Results

Error histogram for logic delay activity, predicted activity:
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Results Summary

 Mean absolute error in activity reduced
by factor of 2 for many circuits

o Zero/logic delay activities have
one-sided error bias
— WIll consistently underestimate power

e Prediction model: one-sided error bias
IS eliminated
— Better avg. power estimates
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Summary

e Switching activity analysis:
— Differences between zero, logic, routed
delay activity can be significant

— Glitching severity depends on input activity

* Pre-layout activity prediction:
— A difficult problem

— Demonstrated prediction approach based
on circuit structure/functionality

— Mean activity error reduced,
one-sided error bias eliminated -




