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Motivation

• Today’s largest FPGAs are “hot”
– consume watts of power

• Xilinx Virtex-II CLB: 5.9 µW/MHz [Shang02]
• Modest design: 2500 CLBs, 100 MHz → 1.5 W

• Optimize FPGA power consumption: 
reduce cooling/packaging costs, 
new apps, better reliability

• Characterize, then optimize
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FPGA Power Dissipation

• Power breakdown:
– Majority is dynamic
– Interconnect dominates:

• Xilinx Virtex-II: 50-70% of power dissipated in 
interconnect [Shang02]; 
similar results: [Poon02, Kusse98]

– Average dynamic power:
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Switching Activity

• Different views:
– zero delay activity: all dlys are zero
– logic delay activity: logic dlys only
– routed delay activity: both logic/routing dlys

• Delays introduce glitches: spurious 
transitions that consume power
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Motivation

• Activity analysis (part 1 of this work):
– Study extent of activity change due to glitches

– FPGA delays dominated by interconnect →
severe glitching in this technology?

– Low-power CAD based on zero delay activities →
valid for FPGAs?
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Motivation

• State-of-the-art FPGAs can implement 
complex systems with millions of gates
– Design teams, not just individuals
– Increasingly long design cycle

• Early, high-level power estimation: 
minimize design time & cost
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• Layout is most time-consuming part of 
FPGA CAD flow.

• Pre-layout power estimation requires:
– Net capacitance prediction
– Net activity prediction (part 2 of this work)

Motivation
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Activity Analysis

• Simulation-based approach
• Map 14 circuits into Xilinx Virtex-II
• Simulate with zero’ed delays, 

logic delays, routed delays
• 2 vectors sets: high or low input activity

– high (low) activity vector set: 
each input has 50% (25%) probability of 
toggling between vectors
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Activity Analysis Flow

HDL synthesis (Synplify Pro)HDL synthesis (Synplify Pro)

Technology mappingTechnology mapping

Placement and routingPlacement and routing

Zero or logic delay simulation (Synopsys VSS)Zero or logic delay simulation (Synopsys VSS)
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Effect of Glitching on Transition Count

High activity vector set results:
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Activity Analysis

• Substantial activity increase when 
routing delays are accounted for
– Accounting for logic delays is not enough --

interconnect dominates delay

– High activity vector set:
• act. incr. zero → logic: avg: 28%, max: 84%
• act. incr. logic → routing: avg: 34%, max: 61%
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Effect of Glitching on Transition Count

Low activity vector set results:
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Activity Analysis

• Low activity vector set glitching 1/2 to 
2/3 as severe as high activity vector set 
– Fewer inputs switch simultaneously →

fewer simultaneous transitions on different 
paths to net

– act. incr. zero → logic: avg: 20%, max: 66%
– act. incr. logic → routing: avg: 19%, max 35%
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Effect of Delay Optimization

• Previous results: P & R run without 
performance constraints

• Timing-driven P & R may lead to 
smaller interconnect delays →
less glitching?
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Effect of Delay Optimization
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Activity Prediction

• Problem difficulty:
– How “hard” is the prediction problem?
– What degree of accuracy can be 

expected?

• Gauge “noise” in the prediction problem 
using a specially-designed circuit
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Problem Difficulty

• Regular circuit:

• Has structural & functional regularity
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Problem Difficulty

• Implement “regular” circuit in Virtex-II
• Analyze activity increase on LUT output 

signals from zero to routed delay sim.

• Variability in increase (across LUTs) 
due to delays known only after layout:
– routing delays
– different input-to-output LUT delays

• Represents noise we cannot predict
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Problem Difficulty
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Problem Difficulty

• Variability in activity increase significant:
– 0-40% (low activity vector set)
– 0-100% (high activity vector set)

• Accurate pre-layout activity prediction 
for FPGAs is a difficult problem
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Activity Prediction

• Predict net glitching using zero (or logic) 
delay activity, circuit properties

• Idea: glitches propagated or generated
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Generated Glitches

• FPGA logic elements are uniform, 
have equal drive capability

• Buffered routing switches → connection 
delay approx. fanout independent

• Predict pre-layout path delay using 
path length (# of LUTs)

• Unequal path delays lead to glitches
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Generated Glitches

• Let PL(x) = set of path lengths to node x
• Define # of path lengths introduced by 

node y: 
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a b PL(b) = {4,5}PL(a) = {5,6}

PL(y) = {5,6,7}, IPL(y) = 1



24

Generated Glitches

• Depth term included since glitching 
likely to be worse for “deeper” nodes

)()()( ydepthyIPLygen ⋅+= γ

depth of node driving net y
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Propagated Glitches

• Propagate term uses notions of 
Boolean difference & static probability

• Consider logic function:
• Boolean difference of y w.r.t. xi =
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xi replaced by 1

function f(…) with 
xi replaced by 0



26

Propagated Glitches

• Key:

• Static probability: fraction of time 
logic signal is in “1” state

• Relevant to whether a glitch on xi will 
become a glitch on y
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Propagated Glitches

• za(xi) = zero delay activity of xi

– replace with logic dly activity (if available)
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Experimental Methodology

• Divide 14 circuits into 2 groups: 
characterization circuits and test circuits

1) Tune model for specific CAD flow &
device using characterization circuits

2) Apply model to predict activity in 
test circuits
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Experimental Methodology

• Two prediction scenarios:
– predict routed dly activity from zero dly act.
– predict routed dly activity from logic dly act. 

• Static probability, zero/logic activity 
extracted from simulation 
– parameters can also be computed using 

probabilistic approaches
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Results
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Prediction from zero delay activity data:

• mean error reduced 
by factor of 2 for 
most circuits
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Results

Prediction from logic delay activity data:
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Results
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Results Summary

• Mean absolute error in activity reduced 
by factor of 2 for many circuits

• Zero/logic delay activities have 
one-sided error bias
– Will consistently underestimate power

• Prediction model: one-sided error bias 
is eliminated
– Better avg. power estimates
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Summary

• Switching activity analysis:
– Differences between zero, logic, routed 

delay activity can be significant
– Glitching severity depends on input activity

• Pre-layout activity prediction:
– A difficult problem
– Demonstrated prediction approach based 

on circuit structure/functionality
– Mean activity error reduced, 

one-sided error bias eliminated


