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Pre-defined electrical constraints

We generall%/ think in terms of [placement of our basic blocks and then a
projection of the wiring via early wiring estimates (e.g. Rent’s rule)

Increasingly massive early (pre-placement) electrical global constraints are
consuming wiring resources and are defining what we can do with the wires

We have no clear methods to project the impact of early electrical CFlanning
on routability, congestion and tradeoff weights between wiring an
electrical constraints

Up front constraints are in power grid (current carrying capacity, droop,

noise immunity), clock (neise immunity, signal loss, variational immunity),
signals (signal loss, noise immunity, traversal length), etc.

Design variables: width/pitch of signals, Width/CFitch of power, signal to rail
ratio, repeater bays & via stacks, area assigned to clock, wrong way wires...

Up-front electrical wire planning will be the major wiring
constraint for the next generations of microprocessors.
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Top level constraints

Mantra: power, power, power
Resistance increasing each process generation
Frequency increasing

Cell-based design CBD forces early fixing of regular
structures

power delivery
clock delivery
repeater bays
etc.

CBD used to reduce manpower and time to market
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Moore’s Law Continues
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= Transistors per IC doubles every two years
= In less than 30 years
1,000X decrease in size
10,000X increase in performance
10,000,000X reduction in cost
= Heading toward 1 billion transistors before end of this decade
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Processor frequency trend
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Processor die size trend

Die Size increase by 25%
each process generation
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Processor power trend
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» Process scaling provides higher - Lead processor power increases
performance at lower power but every generation
number of devices swamps out Vcc will scale by only 0.85 (not 0.7)

effect for next generation. Also Active power density will increase
increasing: by ~30-80% (not constant)

Leakage Leakage power will make it worse
Thermal envelopes as process shrinks
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Processor power density trend

LA

i Arizona
in the
Nuclear Reactor wpp

L 2
XS Pentium IV R

Hot plate Pentium Il ®processo
N Pentium Il ®processor
—3

Pentium Pro ®processor
Pentium ®processor

¢ 1486

E
2
2
5
=

0.5u  035p 025p 0.18p 0.13p 0.1p  0.07p

e 60Watt/cm? today may rise to 200Watts/cm?2 for 45nm by 2010.
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Current scaling

Power density increases 80% per generation

Vdd scales by 0.85X per generation

Power translates into current: doubles every generation
Add to this effects of Leakage

The cost to maintain the same relative IR drop is high
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Current (I) Constraints on Wiring

More power hungry devices mean more current being
drawn through the power grid

Increase in IR drop

Electromigration and self-heating

Power grid must be made wider or take up more area as
the current gets larger

especially as resistance goes up

C4 density and capacity goes up and power grid must
also match frequency and current limits

A difficult Intel design constraint happened when early
wide power rails caused a routability problem later on

Extremely difficult to change power grid later on when
congestion constraints become available (CBD)
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Power density and temperature

Power Map On-Die Temperature
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s With high power density, cannot assume uniformity
As die temperature increases stress on wires goes up
At high die temp., long-term reliability can be compromised
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From early power projections to
estimated current/thermal impact
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Power grid and temperature
constraint on wiring

More power hungry devices mean hot spot areas on die

Power grid must also satisfy electromigration constraints,
especially in hot spot areas

Grid made wider to address EM (area increase won't
address problem) taking up more routing resources

Electromigration constraints near the C4 bumps can
mean wrong way wiring!

Need to understand impact on routability and congestion
as these early decisions are being made

Routing limitations later on have forced us to change the
early electrical specifications
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Frequency advances faster than gate

delay reduces

= Extra frequency scaling
Reducigothe levels of logic between flops

1
1986 1996 2006

Number of gates/clock reduces by
25% per generation
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High-frequency implication

= How many stages of logic will fit in a cycle for
65nm technology?

CLK | T oEK . 10
| ||||||||||||||||||||||||||i‘||

1
1986 1996 2006

s Paths with several stages will temporarily spread
out activity compared to paths with fewer stages
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Frequency and first droop
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More simultaneous
events cause more droop
effects (clock + logic)

First droop and general
droop is a serious design
constraint

Power grid must be able
to tackle first droop

Possibly enhanced power
grid around first droop
areas of die at the cost of
non-uniform wiring
resources

Eli Chiprout
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Ideal scaling
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Global wire length scaling

Global Local

April 22, 2003 SLIP 2003




Strategic CAD, Intel Labs

Interconnect scaling
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Resistivity scaling

s Ideally goes up with the square of the scaling (actually
WOI'SE)

s Wires are harder to drive: need mor%y%peaters

More repeaters per generation
= inter-repeater length scales faster than gates ( ) due to RC
= humber of repeaters increases greater than quadratically

= increasing number of clocked repeaters due to loss of cycle time
= More planing up front to repeater farm mesh structures

shorter wires
more via stacks

s Only exacerbates Power delivery problem already
described
Wider rails
Higher density of C4 bumps and therefore wide upper metals
Rails more frequent generally
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Inter-repeater scaling
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Repeater bays pre-planned
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Increasingly global pre-
placement will be necessary

This will be based on
knowledge of the technology
layers and what the realistic
expected inter-repeater
distances should be

Via stacks will be uniformly
known in advance and need to
be accounted for in pre-routing
estimates




Strategic CAD, Intel Labs

Noise trends

= Switching speeds going up
= Cap coupling going up
= Inductive coupling because of synchronicity

m As process scales it becomes more
susceptible to power droop impact on
delay: 1%/1% -> 1%/3%
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Trend of interconnect noise

Resistance m Resistance

Very local
O Only varies at high F
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CL Noise Due to Coupling

= More coupling means more noise

Moves design away from being digital

Coupling can be capacitive (easy to rectify during design and
more probable) or inductive (more serious, less probable,
difficult during design so plan for up front)
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Timing Variation Due to CL Coupling

s Coupling increases delay variation (noise-on-timing)

Environmental variation
» Interconnect coupling is deterministic
= Patterns are non-deterministic generally
= Difficult to introduce correctly into static timing flows
= Inductive noise on timing may be non-negligible
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How On-chip Inductive Noise Occurs

Induced current can
itself induce current
that reverses effects

/

Inductivi Signal
Attacker 9

Magnetic fields can act for longer distances and die
off logarithmically compared to electrical fields
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RC/RLC noise difference
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On-chip interaction: complex attack
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Individual attacking noise effects

M6 noise

/ /—\ / Capacitive nearest neighbors
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Timing

1000u

25 signals
Victim up

NO RLC noise

Intel labs

April 22, 2003 SLIP 2003




Strategic CAD, Intel Labs Eli Chiprout

Timing
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Timing
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Window of influence

Intel labs
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But nets look like th"s...
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Multiple attackers

= \Worst case scenario is pretty bad!

= If we used this, design could not be done

= Probability of worst case is almost zero

= This choice of probability window can be

the source of inaccuracy greater than
inductive modeling!

= Reasonable noise window and shielding returns
must be chosen up front

the more returns the better!
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Impact of noise on wiring

= Need a robust (low) signal to rail ratio
= Routability constraints nonlinear function of this ratio
= Need more and staggered repeaters to disrupt the noise
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Typical early wiring studies

2D only
freg. range
inter-repeater length

drivers/receivers on
each layer

simultaneous f-dept.
R/L/C models
Optimization in this
domain only
considers IR drop, C
noise, L noise,

epecter distance
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Global noise studies with variable
power grid signal/rail ratio
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Global delay studies with variable
power grid signal/rail ratio
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Global noise studies with fixed
power grid and varying driver size

Buffer size (pmos)
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Global delay studies with fixed
power grid and varying driver size

—e—up flight time
—=— yp delay
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Global noise studies with fixed
power grid and varying line length

1000
Linelength (microns)
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Global delay studies with fixed power
grid, varying length, wc noise
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Decoupling capacitance

= Increasing dI/dt causing more need for de-cap
pre-placement

= Decap planning needs to take place early and
generically even before there are placeable
blocks

= What is the impact of these pre-placed decap
farms?

= Probably not much since contact from Vcc to Vss
can take place at any layer without via stacks
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Clock issues

» Clock distribution also fixed early

Process variation and environmental variation
fix clock tracks and shields early

Grid increasingly used due to variability
Not covered in this talk

= Between clock and power most upper
tracks are heavily defined
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Most electrical wiring relationships fixed
by the time we get to placement

= Not much consideration of physical wiring
constraints
= In the past this was not a problem

Now, wiring resources not optimized will be
consumed

= | ater feedback “solutions” from routing
are strange and difficult to accomplish
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What does this mean for wires?

There used to be maneuvering room for not thinking about wires
until placement/routing

Increasingly, power grid must satisfy electrical constraints early on:
current, EM and noise

Clock grid also defined early (variability, skew, inductance)
Repeater insertion gets pre-defined (fixed bays, via stacks)

What is the impact on the wires? No necessarily rent’s rule first!
We need a bigger picture...
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Metrics needed

Maximum power distribution wiring area allowed

Maximum clock distribution wiring area
Per layer analysis and tradeoff for each

Global noise verses routability tradeoff
Repeater farms per area vs. via stack blockage
= Generic repeater distances verses congestion

= Number of repeater farms necessary with power
grid definition and wiring needs

s EtC.
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Example for one layer

\

[ = signal to power ratio
il Wi lculated for noise/del
Wp N pOwer I‘aII Wldth < calculated tor noise/delay

d. = inter-repeater distance
= minimum signal width/space

constraints

= Area of die
= humber of power rails

= AD /[(zrs/p +1)Ws T Wp]
Ap = area of power rails = /AUWpr
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Example for one layer (con’d)

N,s = number of via stacks = /A, (g, N )/ d,
s assumes full wires and no L distribution

= gives humber of via obstructions on layer

below

n“.s = number of via obstructions per wire
ength on layer k below

; k k
INGI/[(2rg) + YN A ]
s where N is calculated based on layer
Py e .
k power grid noise/delay constraints
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Conclusion

s Electrical constraints for high-performance
designs are increasingly taking over the nature
of early wiring constraints

= \We need new measures to tie in early electrical
planning for noise/delay/power/em/de-
cap/repeater numbers and wiring implications
for the subseguent design flows

= A simple example given
s Would like to see academic thrust in this area
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