

Interconnect IP for Network-on-Chip

J. Liu, M. G. Shen, L-R Zheng and H. Tenhunen Labratory of Electronic and Computer Systems Royal Institute of Technology (KTH) Electrum 229, SE 164 40 Kista/Stockholm Sweden {jianliu,mgshen,lrzheng,hannu}@imit.kth.se

Presentation Outline

- Why Network-on-Chip (NoC)
- NoC architecture
- Interconnect constraints in NoC
- Bandwidth optimizaiton in NoC
- Interconnect Intellectual Property (IIP)
- Conclusions

Trends and Challenges

- Communication vs. computation
- Deep submicron effects
- Global synchrony
- Design productivity gap
- Heterogeneity of functions

NoC Architecture

Simple 2D mesh, other topologies possible

Resource: processor, memory, IP core, FPGA... Inter-resource communicate using data packets.

- Reuse
 - Components and resources
 - Communication platform
 - Design and simulation environment
 - Verification
- Predictability
 - Communication performance
 - Electrical properties

Interconnect Constriants

GALS = globally asynchronous, locally synchronous

Cycle time > wire delay of length 2L

RC delay for a single wire

Without repeaters

With repeaters

 $T_{d} = 0.377R_{s}C_{s} + 0.693(R_{d}C_{out} + R_{d}C_{s} + R_{s}C_{out})$

 $\overline{T_{total}} = k \cdot (T_{drv} + 0.4 \cdot rc(l/k)^2)$

 $T_d = 2.13\sqrt{rcFO1} \Rightarrow 4.26L\sqrt{rcFO1} < 1 \ clock \ cycle$

WC FO1<u>~</u>167*L_{gate} ps (R. Ho, IEEE Proc. vol.89 no.4, 2001)

Maximum synchronous resource size

Wire Type	Parameter	0.18-µm	0.13-µm	0.10-µm	0.07-µm	0.05-µm
Semi-	R (ohm/mm)	107	185	317	611	1196
Global	c (fF/mm)	331	268	208	170	155

	0.18-µm).13-µn).10-µn).07-µm	.05-µı
Cost Perf. (GHz)	0.56	0.77	1.0	1.4	2.0
High Perf. (GHz)	1.1	1.5	2.0	2.9	4.0

Wire parameters

Clock frequency

 $T_d = 2.13\sqrt{rcFO1} \Rightarrow 4.26L\sqrt{rcFO1} < 1 \ clock \ cycle$

Optimal repeater insertion with crosstalk

 C_c -- crosstalk capacitance, k- number of repeaters, h- repeater size

$$\begin{aligned} \frac{\partial t_{0.5}}{\partial k} &= 0 \Longrightarrow k_{opt} = \sqrt{\frac{0.4RC_s + 1.5RC_c}{0.7R_{drv}C_{drv}}}\\ \frac{\partial t_{0.5}}{\partial h} &= 0 \Longrightarrow h_{opt} = \sqrt{\frac{0.7R_{drv}C_s + 3.1R_{drv}C_c}{0.7RC_{drv}}} \end{aligned}$$

(D. Pamunuwa & H. Tenhunen, Proc. of 14th Int. Conference on VLSI Design, January 2001)

Limit: Inter-symbol interference

(a) no refresh; (b) refreshed;@ same total signal delay,(a) 1.3mm (b) 3 mm.

Inter-resource bandwidth optimization

• **PROBLEM:** Given a fixed metal area for communication link: what is the optimal configuration?

1 huge wire? Signal speed close to speed of light, but only one wire and that's it!

Make them thinner & Space them further apart? Now wire resistance is higher!

A few fat wires? Now cross-talk comes into play!

Large number to benefit from parallelism? Now wire resistance and coupling capacitance are both much higher!

How does repeater insertion affect all this?

Fixed width W_T

$W_T = NW + (N-1)S$ $(= 15 \ \mu m)$

D. Pamunuwa, ISCAS 2002

Without buffers

With optimal buffering

Components in interconnect IP

Network taxonomy

Switch for datagram network

- Buffer-less switch

Synthesis with Synopsys

constraint	total combined logic	critical path gate depth	
optimised for area	13 964	79	
optimised for speed	21 029	48	

E. Nilsson, Design and Implementation of a hot-potato Switch in a Network on Chip, Master thesis, KTH.

Why (not) datagram network

- Advantages
 - State- and memoryless switch gives simple design
 - Easily adapts to changes in the network
- Disadvantages
 - Delay variation
 - Out-of-order delivery

- An end-to-end "channel" is needed, compare to bus control.
- Three RAM frame buffers for each input
- Two RAM frame buffers for each output
- Two slot map tables (SMTs) for each input/output pair
- Fully connected switching fabric

Phase compensation scheme

Royal Institute of Technology (KTH)

Equivalent time-space-time (TST) switch

UNGL

OOH

Fekniska -

Högskolan

Slot Map Table (SMP)

- Has same function as the TSIs and crossbar schedule together in the TST switch.
- Controls the read/write operations using three fields: input buffer number (ib), input slot number (is) and output slot number (os).

(a) SMT for output buffer 0		(b) SMT for output buffer 1			(c) SMT for output buffer 2				
2	3	1	0	3	1		1	3	1
0	1	0	2	2	3		1	0	0
1	1	3	0	2	2		2	1	2
0	0	2	1	2	0		2	0	3
ib	is	OS	ib	is	OS		ib	is	OS

SMT properties

- A row in the SMTs corresponds to a time period (cycle) long enough to perform a read/write operation pair
- Two different outputs are not allowed to access different memory locations of an input in same cycle (assume one read port)
- Due to possible multicasts, it may require more time cycles than the number of time slots in a frame

Problem with multicast

Red entries may not be in same row since different outputs read from same input.

ib	is	OS
0	0	0
0	1	1
1	1	2

ib	is	os
0	0	0
0	1	1
1	2	2

Green and blue entries may not be in same row since they are reads from diffent memory locations of same input

output

buffer 1

(b) SMT for buffer 0

ib is OS

> (c) SMT for output buffer 2

Tasks

- How many rows do the SMTs need?
- Effective scheduling algorithms? Here, scheduling means arbitrary column permutations of the SMTs. It's OK to permute a SMT since the RAM buffers can be read in any order.

SMT length

- Let the number of inputs and outputs be *p*
- Let the number of time slots in a frame be *n*
- The required SMT length is *n* for unicast
- Best known algorithm is O(*nplogn*)
- Run-time rescheduling of an entry O(*p*)

Multicast scheduling

- The required SMT length is $\min\{np, n^2\}$
- Finding the optimal schedule is NP-hard
- Approximative greedy algorithms exit
- SMT length = $qn + p^{\frac{1}{q}}(n-1)$, here q is integer

(Teofilo F. Gonzalez, "Multimessage Multicasting: Complexity and Approximations", 1996)

• For 2D mesh, *p* = 5. Multiport RAM keeps SMT length = *n*. No scheduling needed.

Conclusions

- From computation to communication and interconnect centric design
- NoC platform uses interconnect IPs to provide wellcontroled global wire delay and efficient global commnication
- Wire planning and repeater insertion maximizes the interresource bandwidth
- Different network cores give different switch architecture