

Feng Zhou, Esther Y. Cheng, Bo Yao, Chung-Kuan Cheng, Ronald Graham

University of California, San Diego

Outline

- Background
- X-Trees and Y-Trees
- Performance Evaluation
- Representation of Hexagonal Cells
- Conclusions

- Small microprocessor size makes multiprocessors on a chip possible
- 100k trans. =>Embedded MPU
- Billions trans. on a chip nowadays
- Hundreds MPUs on a chip

An example: RAW chip (MIT)

(http://cag-www.lcs.mit.edu/raw/)

- Device is cheap while interconnect is expensive
 - Limited routing resource for global interconnect between processors
 - Long wire in global interconnect => large delay
- Interconnect architecture determines the communication efficiency to a large extent.

Interconnect Architectures (1)

- Manhattan
 - Two direction routing:
 - Horizontal
 - Vertical
 - Square cell

Interconnect Architectures (2)

- X architecture
 - Four direction routing:
 - Horizontal
 - Vertical
 - / 45°
 - \ 135°
 - Square cell

Interconnect Architectures (3)

- Y-Architecture
 - Three routing directions:
 - - / 60°
 - 120°
 - Hexagon cells

Proposed by Chen, et al, in ASP-DAC '03

Advantage of Y-Architecture

- More routing direction => Better throughput over Manhattan (24% more)
 Comparable with X (12.6% less)
- Same pitch for all routing directions. (X must use different pitch)

Universal Communication Networks – Fat trees

- Introduced by Leiserson, 1985
- General structure
 - Complete binary tree
 - Leaf nodes are processors
 - Internal nodes are switch points
 - Capacity of the channel increases as we go up the tree

X-Trees (1)

- Elements:
- A X-tree connectSwitch at the 4 cells
 - center

X-Trees (2)

Expending hierarchically

2-level X-Tree

Can be embedded in X architecture

Definition of Y-Trees (1)

Basic cells on Y-Trees

Level 0

Level 1

- Connect 3 cells with a "Y" structure to form a higher level cell
- Four "Y" directions

Definition of Y-Trees (2)

Hierarchical expending

Can be embedded in Y Architecture

Growth of Y-Trees

- Connect 3 (k-1)-level cells with a "Y" to form a k-level cell.
- Same direction of Y in each level.
 Direction of Y must rotate 90 degrees (positive or negative) between adjacent levels.
- Y-Tree can grow hierarchically without any empty space.

- Properties of the cell array
 - 1. ½ grid shift between rows (columns)
 - 2. Each cell is adj. to 2 cells in same row
 - 3. Each cell is adj. to 2 cells in each of the neighboring row (column)

Properties of Y-trees

- For a Y-Tree of n levels, there are 2ⁿ combinations.
- a cell at the k-th level in the Y-Tree contains 3^k hexagons.
- Y-Tree can grow hierarchically and cover all the hexagons in the array without empty holes.

2003-4-22

Performance Evaluation

Object function: M = L * D

where $L = \sum$ length of each wire segment

$$D = \sum_{1 \le i < j \le P} d_{ij},$$

 (d_{ij}) is the distance of leaf node i and j on the tree)

Cheng, et al, ICCD 2002

- L for the wiring resource cost
- D for power consumption due to wire capacitance
- M is smaller the better

Deriving L and D for X-Trees

Recurrence form

L _x	D_x
$L_1 = 2\sqrt{2}$	$D_1 = 6\sqrt{2}$
$L_n = 4L_{n-1} + 2^{3n-2}\sqrt{2}$	$D_n = 4D_{n-1} + 6 \cdot 2^{4n-4} \sqrt{2}(2^n - 1)$

Closed form

$$L_x(n) = \sqrt{2}(2^{3n-1} - 2^{2n-1})$$

$$D_x(n) = \frac{\sqrt{2}}{14}4^n(6 \cdot 2^{3n} - 7 \cdot 2^{2n} + 1)$$

2003-4-22

Deriving L and D for Y-Trees

Recurrence form

L _y	D _y
$L_1 = \sqrt{3}a$	$D_1 = 2\sqrt{3}a$
$L_n = 3L_{n-1} + 3^{\frac{3}{2}n-1}a$	$D_n = 3D_{n-1} + (3 + \sqrt{3})(3^{\frac{n}{2}} - 1)3^{2n-2}a$

Closed form

$$L_x(n) = \frac{3^n (\sqrt{3}^n - 1)}{3 - \sqrt{3}} a$$

$$D_x(n) = \frac{3 + \sqrt{3}}{78} 3^n \left[(9 + \sqrt{3})(3\sqrt{3})^n - 1) - 13(3^n - 1) \right] a$$

Normalization by Area

Cell area is 1

$$=> a = \sqrt{2} / \sqrt[4]{3}$$

- X Trees and Y Trees covers different areawith same level =>
 - Normalize L and D with A^{3/2} and A^{5/2} (area of the tree)

$$L_{norm} = L/A^{3/2}, D_{norm} = D/A^{5/2}$$

Normalize M with A²

$$M_{norm} = M/A^2$$

• A is the area of the tree, $A_X=4^n$, $A_Y=3^n$

Comparing X- and Y-Trees with the M Metric

Normalized value

$$M_{Xnorm}(n) \approx \frac{3}{7} = 0.43$$
 $M_{Ynorm}(n) \approx \frac{11 + 7\sqrt{3}}{39} = 0.59$ $L_{Xnorm}(n) \approx \frac{\sqrt{2}}{2} = 0.71$ $L_{Ynorm}(n) \approx \frac{1}{3-\sqrt{3}}a = 0.85$ $D_{Xnorm}(n) \approx \frac{3\sqrt{2}}{7} = 0.61$ $D_{Ynorm}(n) \approx \frac{5+2\sqrt{3}}{13}a = 0.70$

Y-Trees are comparable to X-Trees

Representation of Merged Hexagonal cells

- Basic observation:
 - Only 3 directions of edge
 - Each edge makes either a
 120-degree or minus 120-degree
 turn from the previous edge

A level 2 cell

- Representation:
 - Mark each edge with
 - "1" 120-degree
 - "0" minus 120-degree

Start with the first vertical edge going down.

Example of Hexagonal Cell Representation

- A level 1 cell
- Start with b, end at a, we get
 101110111011

2003-4-22

Example of Cell Merging

- Merging 3 level 1 cells
- **100110111001101110011011**

24

Conclusions

- A three way on-chip interconnect architecture, Y-Trees, is proposed.
- Y-Trees have compactable performance with X-Trees under M metrics.
- Y-Trees can grow hierarchically and can cover all the hexagonal cells in the array.

Thanks!

Questions?