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| nter connect-Power Definition

 |nterconnect-Power isdynamic power consumption
dueto interconnect capacitance switching
— How much power isconsumed by I nterconnections ?
— Future generationstrends ?
— How to reduce the inter connect power ?

0.13 pm cross-section, source - I ntel
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Background

e Power isbecoming a major design issue

e Scope: Dynamic power, the majority of
power

e P= SAF.C, *V2 of

 Thiswork focuses on the capacitanceterm
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Outline

e Research methodology

e |nterconnect Power Analysis

e Power-Aware Router Experiment
e |nterconnect Power Prediction

e SUMmary
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Case study

* Low-power, state-of-the-art pi-processor
 Dynamic switching power analysis
e |nterconnect attributes:
» Length
» Capacitance
» Fan Out (FO)
» Hierarchy data
> Net type
> Activity factors (AF) ===
» Miscellaneous. F 111

L
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| nter connect Length M odel

e Total wirelength
o Stitched across hierarchies
e Summed over repeaters

e Net modd
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Activity Factors Generation

Power test vectors generation
(worst case for high power, unit stressing)

RTL full-chip ssimulation
(results in blocks primary inputs: Activity,Probability)

Monte-Carlo based block inputs generation
(based on the RTL statistics)

Transistor level smulation - per block
(Unit delay, tuning for glitches)

Per node activity factor

Source -” Intel® Pentium® M Processor Power Estimation, Budgeting, Optimization, and Validation”, 1TJ 2003
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Outline

e Research methodology

e |Interconnect Power Analysis

e Power-Aware Router Experiment
e |nterconnect Power Prediction

e SUMmary
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| nter connect Length Distribution
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| nter connect Length Distribution

e Log—Log
scale

e Exponential
decrease with
length

» Global clock —
not included
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Total Dynamic Power

e Total Dynamic

Power

* Global clock —
not included

e Local
nets = 66%

nets = 34%

Total Power vs. Net Length
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Total Dynamic Power Breakdown
Global clock included
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Power Breakdown by Net Types

Global clock included

| nter connect power Total power

(Inter connect only) (Gate, Diffusion and I nter connect)
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| nter connect Power Breakdown

| nter connect consumes 50% of dynamic power

Clock power ~40% (of Interconnect and total)

90% of power consumed by 10% of nets

| nter connect design iIsNOT power-aware!

Predictive model can project the interconnect power .
| nter connect power Total power

O global signals

34% \
%

global clock

glLocal signals

Local clock
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Outline

e Research methodology

e |nterconnect Power Analysis

e Power-Aware Router Experiment
e |nterconnect Power Prediction

e SUMmMary

15
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Experiment - Power-Awar e Router

* Routing Experiment optimizing processor’s blocks
» L ocal nodes (clock and signals) consume 66% of dynamic power

= 10% of netsconsume 90% of power

= Min. spanning treescan save over 20% | nterconnect power

e

» Routing with spacing can save up to 40% | nterconnect power

e

ine . Prembas i s Eiir e el [EX
rwims Hofep | Slees Sdmagor | e Pasar |
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Power-Awar e Router Flow

Power grid routing

A4

Clock tree:
high FO, long lines, very active

Clock tree routing
With spacing

Y
T . Top n% power consuming
Avoiding congestion signal nets routing

A 4
Global and Detailed Routing -
of the un-routed nets
(timing and congestion driven)

~

Power-aware Rip up
and re-route

Yes

~__ Followed by downsizing @
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Results - Power Saving

18

IC power saving

5 20%

Block A Block B

@ Driver Downsizing

@ Router Power Saving

Downsize

Block C Block D Block E

saving

Router

saving

1 - Estimated based on clock interconnect power
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Outline

e Research methodology

e |nterconnect Power Analysis
 Power-Aware Router Experiment
e |nterconnect Power Prediction

e SUMmMary

19
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Future of I nterconnect Power

Dynamic Power breakdown

100%

90%

Gate

80%

70%

Diffusion

| nter connect ——;

10%

0%
0.15 0.13 0.1 0.09 0.08 0.07 0.065 0.045 0.032 0.022

Technology generation [um]

(using optimistic inter connect scaling)

Source - ITRS 2001 Edition adapted data
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e The number of nets
vs. unit length —

M odified Davis modd

* The dynamic power
aver age breakdown

of Nets (normalized

21

| nter connect Power Prediction

| nter connect length projection
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| nter connect Power M odel

e Multiplication of the number of inter connects with power
breakdowns gives.

Projected dynamic power vs. net length

i
A //MQ\\
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00000000000

== Projection

Power (normalized)

10(I)_mgth [um] 1000
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Outline

e Research methodology

e |nterconnect Power Analysis

e Power-Aware Router Experiment
e |nterconnect Power Prediction

e Summary

23
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Summary

| nter connect i1s50% of the dynamic power of processors, and
getting wor se.

? Interconnect power -awar e design isrecommended

Clock consumes 40% of inter connect power.

? Clock interconnect spacing is suggested

| nter connect power issum of nearly all net lengths and types.
? Router level Interconnect power reduction addresses all
| nter connect power has strong dependency on the hierarchy
? Per Hierarchy analysis and optimization algorithms
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Future Resear ch

1. Interconnect Power characterization and prediction

2. Investigate | nter connect power reduction techniques:

= |nterconnect-Spacing for power

* |nterconnect Power-Aware physical design
= Agpect Ratio optimization for power

=  Architectural communication reduction



14/2/2004

Questions ?
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BACKUP-Slides

27
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Processor Case Study

Il

* Analysissubject: Processor, 0.13 [um]
o 77 million transistors, die size of 88 [mMm?]
o Data sources (AF, Capacitance, L ength)

« Excluded: L2 cache, global clock, analog units
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Global Communication

Globa Power % vs. Test Power

* Global power is

important © scional

e Global power is —Poly (%loba /‘_‘\A
¢
mostly I1C ‘ :

e For higher power /

benchmarks — /
Global power is

higher : /

» G-clock excluded a

5%

%
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Benchmark Selection

* High power test benchmarks

= Worst case design
= Suitablefor: thermal design, power grid design
= Average power isafraction of peak power

e Unit stressing benchmarks

e Averaging of all high power benchmarks
* High node coverage

I TC logo
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| nter connect Power Implications

 |nterconnect power can bereduced by
minimizing switched capacitance;

= Fabrication process (wire parameters)

= Power-driven physical design

* | ogic optimization for power

= Architectural interconnect optimization
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| nter connect Capacitance

e Side-cap isincreasing:

/0% to 80%

HH B

self-cap.

Layer 3

Layer 2

Side-cap.

Layer 1

Source - ITRS 2001 Edition adapted data

100% 1

709

60% 1

50% -

40%

30% 4

20% -

10% 1

0%

Global Capacitance breakdown

0.15 0.13 0.1 0.09 0.08 0.07 0.065 0.045 0.032 0.022

Technology generation [um|
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Fabrication Process —
Aspect Ratio (AR)

Thickness
Width Thickness

A

| nter connect AR =

Width
Low AR = Low Interconnect power
. . L ocal
Low AR = High resistance (S S S R 8,
Frequency Modeling T O S e i Ls
= Local: average gate, average |C
- Global: optimally buffered global 1C Global

ET‘%ET@‘ET@‘MET@‘
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Aspect Ratio — Trade offs

Freg. And Power vs. Relative AR

Power — depends on cap. -

Frequency: | Local path speed

/

= Local —gatesand IC cap.
= Global —mostly IC —RC

| Power

[ ]
8
=

Per layer AR optimization !
Scaling? more power save,

lessfrequency loss /

/Global path speed

—&—Frequency - Local

—o—Frequency - Global

=& Dynamic Power

50.0%

Relative AR

150.0%
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Physical Design - Spacing

e Spacing can save up to 40%
» About 30% iswith double space

« Spacing advantages:. scaling,
frequency, reliability, noise,

easy to modify

0.13 [um] global I1C cap. vs. spacing

.
n
8

—#—Global capacita

AA & e

60%

40%

Capacitance

20%
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Spacing calculation

Back of an envelope estimation:
= 10% of Interconnect ? 90% power
= X2 spacing = extra 20% wiring
= Global clock —not spaced (inductance)
» Global clock i1s20% of inter connect power
= Save: 30% of (90% -20%) = 20%

* |nterconnect iIs50% ? 10% power save
Expected 20% with downsizing

= Minor losses - congestion

36
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-Architecture- CMP

Gen. 1 Gen. 2

Uniprocessor
 |C - predicted by Rent ﬂH CMP

e L2-i1dentical, minor \ L
e Clock - Identical ! H
e Sameaverage AF.

 Result ~5% less dynamic power for CMP

 Comparing two scaling
methods, by |1 C power.
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Power critical
VS.
Timing critical

100% //’_("’M_-‘_._-_
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70% /
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A mulated Pow
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% 50%
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S 40%

30%

20% /T

10% _//

0% - ' ——— o ' '
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Outline

e Research methodology

e |nterconnect Power Analysis
 Future Trends Analysis

* |nterconnect Power I mplications
e SUMmMary

39
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| nter connect L ength Prediction

e Technology projections- I TRS
o | nter connect length predictions:

» ITRSmoded: 1/3 of the routing space
- most optimistic

= Davis model:

0 Rent’srule based Time

o Predicts number of nets as function of:
the number of gates and complexity factors

 Models calibrated based on the case study
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Rent' s parameters

Rent'srulee T=KkNT'

# of I/O terminals (pins)

# of gates

avg. |/O’s per gate

Rent’ s exponent

canbe: 0<r<1 , but common -
(smple) 0.5 <r < 0.75 (complex)

-~ X Z -

N gates

(1T 1T 1
T terminals

41
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Donath’ s length estimation model

For the I-th level:

There are 4' blocks

n

For each block there are: k%g terminal s
ed g

K aaN 0§

Assuming two terminal nets : —*X—+ nets
2 edg

The nets of the I-1 level must be substracted.
-k aN©

il

Nets for level i ;: n=4 % 9 4 E - = "‘— —-—’(1 4" 1)

2 &4 g 2 41y 2 &4 g
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Average Interconnection length

The wires can be of two types A and D.

&4 Al +i,-ia+lio- i e
La = ialialie=ljpL _>¢ C A gy O I o
1Y 3 3 cembnaln TOOASEEE RN T combinaton
Lo = S84 Hutia o o e
in=lja=lig=ljg=l =23 (T} ‘T)
I : | Taken from a SLIP 2001 tutoria by Dirk Stroobandt
14> 2
The average.I (= g " ox
o
aniwi r-0.5 r-1.5 rl"
_ ) 9]
Overall : R=-= equals N — 1 LN s o8- 4 r
2 n 9x§ 47051 14" ,;gl N"™

i=1
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Davis M odel

FromRent'srule: 1 =rx\°

i i ax 3 , 0,204
IDF " _.{ 116N © 2 >G>E§-2><\/N>¢ +2><N>4;>4 P
;\/_JEI E24N %G{wa)gx%-‘l
. 2>xN{1- N7*
Where:,- O c- AL N7)

FO+1 = & 5, 1+2xp- 2% 29N N ©
& Tpo2xp- ) p-1)2xp-3) 6><p 2xp-1 p- 1,

|nterconnect total number and Iength:
2x/N

Nets: | - 0il)az Length: |
Multipoint Length.

OI( )2 xdz

X where c=

=L
total FO+3

multi_terminal
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Davis Model - extension

e Constant factor favors shorter nets.
« Short P2P net has higher chance to be a part

of a multipoint net.
rurrber of parttopairt ressharer tranl

' - mut-anrd f =
» Correction factor: . actor() e ra———
 Length: | (1) = F_loDd (z ) multi-terminal factor(z ).tz

0000000
\ —8— Measured
000000

N —— Extended Das Hode
00000

2

Q

z

5

o

g
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i =10 =]
File Window Plugins BLS Flow ECO Analysis Help | File Window Plugins BLS Flow ECO Analysis Help i
| Unified Setup Flow Manager I Interactive Editor |
/| Display.

Unified Setup | Flow Manager I Interactive Editor

||k
in nets Tlist. (GuiTclcallbacks)

select nets late_clkbuf
% —I- Selected “Tate_clkbuf’
% late_clkbuf

= =l
| Command:

(GuiTclicallbacks)

|select nets late_clkbuf
% —I- Selected "late_clkbuf® in nets Tist.
% late_clkbuf

Command: |
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Total Dynamic Power

6 Total Power vs. Net Length

e Total Dynamic
Power

——TOTAL

Total_IC

 Global clock -

|
A

g
N
[
not included &
2 |3
« Local i av
nets=66% 2 |, . / \ / L\
ol
Global \/ ” w \
nets= 34% 1 A
: | | | A
Length [um]

S
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Global IC

and

| ocal

e Local and Global

| C aredifferent:
 Number by

hhhhh

L ength

breakdown
e |C breakdown —

cap and power

 Fan out
 Metal usage
e AFissimilar
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Benchmarks Comparison

Global Dynamic power vs. Length

High Power Tests
\ —
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| nter connect Peaks

Total wirelength vs. Length

4 e | s
: P AN
2 /ﬁ \\\\
1 M
0 e \\\
0 10 100 L ength [um] 1000 10000 100000
Average gatesizing vs. Length
[ 4
Fo
/|
/N N / I
S~ RV A
S~ S~ [
H/_/“ 4 U\

0 L =
0 10 100 1000 10000 100000 '. :

Length [um]
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| TRS Power Trends

 The ITRS power projection inter connect power
reduction that happensin 2006-2007 is based on:

1. Aggressivevoltagereduction

2. Low-k dielectric improvements
* The devices capacitance increase by +30% (trend -15%)
e The combined effect:

* Interconnect power reduction (relativeto voltage)

 Devicepower remains constant
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Dynamic power - ITRStrend

Dynamic power projection

000000

Tech nol ognjf; gener atni gn [um] .

TheBlack curveisthe ITRS maximum heat removal capabilities

(<
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Power-Awar e Flow

Thereduced IC cap allows for
driver downsizing

On averageit reduced the
dynamic power by 1.4 of thelC
power saving

Downsizing istiming verified
Cellsdownsizing reduced the
total area and leakage by 0.4%
No signal spacing was applied
over 30% unused metal

Post-layout optimization are
possible

Placement

v

Power-aware Routing

[}

53

v

RC Extraction

v

Timing Analysis,
Power Analysis

All slacks

1

Timing driven -
driver upsizing

J

positive
?

Power driven
Timing constrained
driver downsizing

Yes Sizing

modified
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 E—worsethan average

FUBS —description

A —medium, randomly picked
B — small, highest clock power
C —small, good potential

D — medium, good potential

Block Name Block A [Block B Block C Block D Block E |AVERAGE]
Area [um’] 138801.6| 101274.6] 65816.1] 164229.1] 59766.3|209537.8
Devices 14574 8644 7618 18194 6109 16675
Inactive Nodes 63.66%| 98.78%| 82.36% 39.22%| 35.38%| 52.94%
Power [uW] 17170.22| 251.15 1786.76] 11811.90 6757.11| 15373.86
[ng"WSeTr ggtlﬁﬂga' 14.3% 17% 22% 29% 41% 17%
Clock cap. 11.25% 259%| 12.75%  13.16% 3.27% 8.01%
Clock power 72.10%| 99.99%| 96.46% 94.99%| 33.84%| 60.47%
IC cap. 34.00%| 27.70%| 38.14% 36.05%| 29.86%| 34.67%
IC power 28.89%| 59.54%| 46.74%  48.62%| 40.65%| 36.83%
Clock IC power 20.19%| 59.54%| 45.48% 46.26%| 16.87%| 23.87%
Clock IC length 1.71% 2.34% 2.05% 2.09% 0.74% 3.85%
Relative -

Capacitance per 82.23%| 113.15%| 87.46% 83.74%| 85.97%| 88.46%
Length Unit.
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Miller Factor - Power .

V1 C

Opposite direction switching- %;WWJ
- _dQ _d(CDbhv,) _ dDVC V2
The current: R ahlr T

Vdd
Energy: E = d R/, >t = d:xdﬂwddxdt CN, v, = 2>CN]

t - Vdd

That is4 i mes asingle SNItChI ng energy.
Decoupling by Miller factor of ‘2'.

Same direction switching => no current.
Decoupling by Miller factor of ‘O’

Average case. Miller factor of ‘1’ suitable for power-
average case sum metric.
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Routing M odel

e Viablockage:  Lae muipier = (1- bocking fraion) " /Heiemse
* Router efficiency: 0.6

e Power grid: 20% of routing

* Clock grid: 10% of top tier

e Moreaccuratethan ITRS 2001.



