Evolution as the blind engineer: wiring minimization in the brain

Dmitri "Mitya" Chklovskii Cold Spring Harbor Laboratory

Optimization is a powerful theoretical tool for understanding brain design

- Evolutionary theory: survival of the fittest
- Maximize fitness to predict animal design
- Fitness ~ functionality cost
- Minimize cost for given functionality

Brain as a neuronal network

Network functionality is captured by neuronal connectivity

Evolutionary cost of wiring

- Signal delay and attenuation
- Metabolic requirements
- Space constraints
- Guidance defects in development

Wiring cost grows with the distance between connected neurons

For given functionality minimize wiring length

C. elegans as Model System

Anterior Posterior

pharynx bulbs gonad arms uterus

1 mm

Nervous system

- Well documented
 - Wiring diagram
 - Neuronal map
- Simple system
 - 302 neurons
 - 11 gangalia
- One-dimensional problem

Can wiring minimization predict neuronal placement?

From the wiring diagram...

To the actual placement...

Post-synaptic Neuron

- Chemical synapse
- Electrical synapse

Post-synaptic Neuron

Quadratic Cost Function

$$E = \left[\frac{1}{2}\sum_{i,j}A_{ij}(r_i - r_j)^2\right] + \left[\sum_{k,l}B_{kl}(r_k - f_l)^2\right]$$

$$= \left[\frac{1}{2}\sum_{i,j}A_{ij}(r_i - r_j)^2\right] + \left[\sum_{k,l}B_{kl}(r_k - f_l)^2\right]$$

$$= \frac{1}{2}\sum_{i,j}A_{ij}(r_i - r_j)^2 + \left[\sum_{k,l}B_{kl}(r_k - f_l)^2\right]$$

$$= \frac{1}{2}\sum_{i,j}A_{ij}(r_i - r_j)^2$$

$$= \frac{1}{2}$$

 r_i = position of neuron i

 A_{ij} = neuron i to neuron j connection matrix

 B_{kl} = neuron k to sensor/effector l connection matrix

For symmetrized A, rewrite into matrix form...

$$E = [r^{T}(D_{A} - A)r] + [r^{T}D_{B}r - 2r^{T}Bf + const]$$

$$L$$

Laplacian of A

$$egin{aligned} D_{Aij} &= oldsymbol{d}_{ij} \sum_{p} A_{ip} \ D_{Bij} &= oldsymbol{d}_{ij} \sum_{p} B_{ip} \end{aligned}$$

Optimal placement coordinates:

$$r = (L + D_B)^{-1} Bf$$

Actual vs. Predicted Neuron Positions

Wiring minimization is reasonable but not perfect

Why is not wiring minimization prediction perfect?

- Nervous system may be sub-optimal
- Other constraints may be important

(e.g. development)

- Quadratic cost function may be incorrect
- Routing optimization may affect placement

Routing or neuronal shape

point neurons

actual neurons

Big brains - large numbers

Brain ~ 10¹¹ neurons

Assembling the wiring diagram will take many years

Routing problem

Network of N neurons

Fully connected (all-to-all)

• Fixed wire diameter, d

Find wiring design minimizing network volume

Design I: Point-to-point axons

Number of neurons: N

Wire diameter:

Axon length per neuron: $l \sqcup NR$

Total wiring volume: $R^3 \square Nld^2$

 \Rightarrow Network size: $R \square Nd$

Mouse cortical column (1mm³): $N=10^5$, $d=0.3\mu m \Rightarrow$ $\Rightarrow R=3$ cm

Design II: Branching axons (multi-pin nets)

Inter-neuron distance: $R/N^{1/3}$

Axon length per neuron: $l = R N^{\frac{1}{2}/3}$

Total wiring volume: $R^3 \square Nld^2$

 \Rightarrow Network size: $R \square N^{5/6}d$

Cortical column: $N=10^5$ $d=0.3\mu m \Rightarrow R=4.4mm$

Design III: Branching axons and dendrites

Total number of voxels: $R^{\ 3}/d^{\ 3}$

Number of voxels containing axon: l/d

Fraction of voxels containing axon: ld^2/R^3

Fraction of voxels containing dendrite: ld^2/R^3

Number of voxels containing axon and dendrite: $l^2d/R^3 \sim 1$

Total wiring volume: $R^3 \square Nld^2$.

Network size:

 $R \square N^{2/3}d$

Cortical column: $N=10^5 d=0.3;1 \mu m \Rightarrow R=1.6 mm$

Is it possible to improve on Design III?

In Design III, dendrite length can be found...

$$R^{3} \square Nld^{2}$$

$$R \square N^{2/3}d$$

$$\Rightarrow l \sim Nd$$

...to be smallest possible:

$$L\geqslant Nd$$

Design III cannot be improved if dendrites are smooth

Design IV: Branching axons and spiny dendrites

Number of voxels containing axon and dendrite: $l^2s/R^3 \sim 1$

Total wiring volume: $R^3 \square Nld^2$

 \Rightarrow Network size: $R \square N^{2/3} d^{4/3} / s^{1/3}$

Cortical column: $N=10^5 d=0.3;1\mu m s=2.5\mu m \Rightarrow$

$$\Rightarrow R=0.8$$
mm

Network volume for various wiring designs

Neuronal shape is a routing solution implementing high inter-connectivity

Cortical architecture is optimized for high inter-connectivity

Synapse re-arrangement is potential memory mechanism with high information storage capacity (Stepanyants, Hof, Chklovskii, 2002)

Experiments on synapse re-arrangement

Two-photon microscope provides *in vivo* images with single-synapse resolution

Spine remodeling indicates synapse rearrangement in vivo

2mm

Trachtenberg, ..., Svoboda, 2002

What determines axon (dendrite) diameter?

Axon diameter minimizes the combined cost of wiring volume and conduction delays

Summary

Wiring minimization is a key factor determining brain architecture

Complexity of neuronal networks poses challenging wiring minimization problems

Potential synapse is a location where axon comes within a spine length of a dendrites

- Potential synapse is a necessary (but not sufficient) condition for an actual synapse
- Potential synaptic connectivity is more stable than actual
- Potential synaptic connectivity can be evaluated geometrically

90% potential connectivity neighborhood

"Potential" definition of a cortical column

What is the correct cost function?

Biology: $Min\{V\} \rightarrow Min\{C=V-\lambda log N\}$

Physics: $Min\{E\} \rightarrow Min\{F=E-TS\}$

Constrained optimization is a powerful tool for building a theory of brain function

Acknowledgments

Armen Stepanyants

Cold Spring Harbor Laboratory