

Prediction of Interconnect Adjacency Distribution: Derivation, Validation, and Applications

Payman Zarkesh-Ha, Ken Doniger, William Loh, and Peter Bendix

LSI Logic Corporation Interconnect Modeling Group February 14, 2004

Slide 1 SLIP 2004

Outline

- * Motivation
- * Interconnect Adjacency Model
 - * Derivation
 - * Validation
 - * Applications
- * Conclusion

Slide 2 SLIP 2004

Effect of Geometry on Capacitance

Slide 3 SLIP 2004

Motivation

* How to choose the geometry for system level modeling of interconnect capacitance:

- * A real system is a mix of many cases.
- * A statistical approach is required to predict the capacitance distribution more realistically.
- * We will derive the interconnect geometry distribution that produces circuit variations.

Slide 4

Outline

- * Motivation
- * Interconnect Adjacency Model
 - * Derivation
 - * Validation
 - * Applications
- * Conclusion

Slide 5 SLIP 2004

Assumptions

- * Wire placement in a random logic network is complex and irregular enough to be modeled by a probability distribution involving "coin flipping".
- * Average channel utilization, p, is known.

Slide 6 SLIP 2004

What is Adjacency?

Interconnect adjacency is the fractional length of an interconnect that possesses neighbors at minimum spacing.

Slide 7 SLIP 2004

Definitions

Slide 8 SLIP 2004

Simple Case: Unit Length System

Window of size n=9

$$f(k) = \frac{e}{k!} \frac{n!}{k!(n-k)!} \frac{\ddot{0}}{\dot{p}} p^{k} (1-p)^{n-k}$$

Bernoulli Distribution

n = total number of grids

k = number of filled grids

p = probability of filling

Realistic System

- * Wires are random length (not all unit length).
- **★** Window size, *n*, is not constant anymore.
- ***** Wires may cross window boundaries.

Derivation details available in the paper.

Slide 10 SLIP 2004

Model Input

- * Average channel utilization, p.
- * Minimum and maximum segment length.
- * Grid size.
- * Segment length distribution.
 - Can be derived from Rent's rule by partitioning.
 - Can be fit empirically.

Slide 11 SLIP 2004

M2 Segment Length Distribution

Technology = 130nm
Metal layer = M2
Min wire length = 1.0 mm
Max wire length = 100 mm

Slide 12 SLIP 2004

Other Segment Length Distribution

Slide 13 SLIP 2004

Outline

- * Motivation
- * Interconnect Adjacency Model
 - * Derivation
 - * Validation
 - * Applications
- * Conclusion

Slide 14 SLIP 2004

Comparison with Actual Data PDF

Metal layer = M2 Technology = 130 nm Channel utilization = 40% Min wire length = 1.0 mm Max wire length = 100 mm Grid size = 0.01 mm

Comparison with Actual Data CDF

Slide 16 SLIP 2004

Comparison with Actual Data CDF

Metal layer = M3
Channel utilization = 50%
Gate pitch = 1.0 mm
Max wire length = 150 mm
Grid size = 0.01 mm

Metal layer = M4
Channel utilization = 42%
Gate pitch = 1.0 mm
Max wire length = 150 mm
Grid size = 0.01 mm

Sensitivity to Length Distribution

Slide 18 SLIP 2004

Adjacency Distribution Change with p

Slide 19 SLIP 2004

Outline

- * Motivation
- * Interconnect Adjacency Model
 - * Derivation
 - * Validation
 - * Applications
- * Conclusion

Slide 20 SLIP 2004

Statistical Crosstalk Analysis

Slide 21 SLIP 2004

Sensitivity Analysis

Slide 22 SLIP 2004

Interconnect Statistical Reference

Slide 23 SLIP 2004

Outline

- * Motivation
- * Interconnect Adjacency Model
 - * Derivation
 - * Validation
 - * Applications
- * Conclusion

Slide 24 SLIP 2004

Conclusions

- * Compact model for Interconnect Adjacency Distribution for random logic networks is derived.
- * The model uses only system level generic parameters such as segment length distribution and channel utilization. This enables us to predict future system level performance.
- * Comparison to product data confirms the accuracy of the model.
- * Some possible applications of the adjacency are proposed.

Slide 25 SLIP 2004

Acknowledgement

We acknowledge Ralph Iverson from Magma Design Automation for his generous support in the extraction of the real data.

Slide 26 SLIP 2004