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The recent past (1995-2005)

“It all started” with a classic paper by Intel Fellow Mark Bohr
• Interconnect scaling–the real limiter to high performance ULSI
• 1995 International Electron Devices Meeting
• Called for new materials and new circuits

Circuits and process people have been very busy since
• Lots of new techniques and methodologies; some even used
• On-chip wires are well understood, arguably manageable

Let’s look ahead to the next several years
• Trends for high performance: architecture, circuits, power
• How do they impact how we think about wires?
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Outline

First, review basic wire scaling trends
• Pay attention to hot-button topics like noise and inductance

Consider high-performance CPU trends
• Focus on frequency, power and cost  

Look at where all of these trends are taking us
• Examine the kinds of machines VLSI wants us to build

Ask: what’s wrong with this picture?
• Break the wire scaling paradigm with Proximity Communication
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Start with gate delays

Wire scaling only matters if it’s slower/faster than gate scaling
• Use delay of a fanout-of-4 inverter (FO4) for normalization

• Use FO4=Lgate¢500pS/µm up to 180nm
• Use FO4=Lgate¢250pS/µm at 130nm and beyond (poly undercut)
Gates are steadily speeding up. How about wires?
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Wire scaling 101

We all remember this infamous slide from the 1997 ITRS

It shows that predicting the future of wires is truly a dodgy business
• So we’ll hedge our bets

– Look at both aggressive and conservative projections

J. Meindl: “Ought to be
the logo of the SRC”
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Be realistic about wires

For wires, only consider RC delays
• But include as many non-idealities as possible

– Copper diffusion barrier (ALD vs non-conformal)
– Surface scattering effects
– Low-k dielectrics within and/or between metal layers
– Thinning from polishing

• Get data from literature, ITRS, fabs, and magic 8-balls

Keep in mind there are two kinds of wires (Sylvester, ICCAD ’98)
• Those that scale in length (“local” wires)
• Those that do not (“global” wires)
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Scaled length wires

Wires of constant logical span get shorter each technology shrink
• For example, module-level wires

Technology shrink
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Scaled length wires

Wires of constant logical span get shorter each technology shrink
• For example, module-level wires

Repeated wire delays stay “constant-ish” with gate delay

Technology shrink
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Global wires

Global wires do not scale down in length

Technology shrink
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Global wires

Global wires do not scale down in length

Delay gets dramatically large relative to gates
And these are optimally repeated; bare wires are even worse!

Technology shrink
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What about bandwidth?

We’ve looked at the delay of short and long wires 
• Important because it gives us the logical span of wires
• But what about the bandwidth of wires?

Note that bandwidth is per-cross-section. For a given wire length,
• I can make each wire wider 
• Or I can have more wires

Repeated VLSI wires have enormous BW
• Cross-sectional bandwidth of one metal layer ~10 Tb/s
• (Okay, that ignores power, clocking, repeater costs. But still…)
• Wires can be thought of as slow but providing high bandwidth
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What about bandwidth?

We’ve looked at the delay of short and long wires 
• Important because it gives us the logical span of wires
• But what about the bandwidth of wires?

Note that bandwidth is per-cross-section. For a given wire length,
• I can make each wire wider 
• Or I can have more wires Å usually the better choice

Repeated VLSI wires have enormous BW
• Cross-sectional bandwidth of one metal layer ~10 Tb/s
• (Okay, that ignores power, clocking, repeater costs. But still…)
• Wires can be thought of as slow but providing high bandwidth
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What about coupled noise?

Wires are going to get skinnier and skinnier
• Aspect ratios up to 3, maybe 3.5, depending on whom you ask

We’re just going to have to live with some levels of noise
• Coupled noise on wires approximately

There are some interesting solutions in the circuit space
• Noise cancellation, staggered repeaters (Naffziger, ISSCC ’01)
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• Aspect ratios up to 3, maybe 3.5, depending on whom you ask
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What about coupled noise?

Wires are going to get skinnier and skinnier
• Aspect ratios up to 3, maybe 3.5, depending on whom you ask

We’re just going to have to live with some levels of noise
• Coupled noise on wires approximately

There are some interesting solutions in the circuit space
• Noise cancellation, staggered repeaters (Naffziger, ISSCC ’01)

attacker attacker
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Solving noise

Always trade off a cheap resource (BW) for a dear one (noise)
• Differential signaling w/ twisting largely eliminates noise

– Cost: differential receiver, minor via congestion, and 2x wires
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Solving noise

Always trade off a cheap resource (BW) for a dear one (noise)
• Differential signaling w/ twisting largely eliminates noise

– Cost: differential receiver, minor via congestion, and 2x wires
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Solving noise

Always trade off a cheap resource (BW) for a dear one (noise)
• Differential signaling w/ twisting largely eliminates noise

– Cost: differential receiver, minor via congestion, and 2x wires
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Solving noise

Always trade off a cheap resource (BW) for a dear one (noise)
• Differential signaling w/ twisting largely eliminates noise

– Cost: differential receiver, minor via congestion, and 2x wires

Caveats
• Not truly costless, and perhaps not yet a point-solution
• But a way to go in the long run, as wires get cheaper

– Global router just runs differential wires and ignores noise
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What about inductance?

We traditionally ignore L (even though it has a water analogy)
• Resistance (R) is related to the diameter of a water hose
• Capacitance (C) is related to
• Inductance (L) is related to
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What about inductance?

We traditionally ignore L (even though it has a water analogy)
• Resistance (R) is related to the diameter of a water hose
• Capacitance (C) is related to mini-bathtubs along the hose
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What about inductance?

We traditionally ignore L (even though it has a water analogy)
• Resistance (R) is related to the diameter of a water hose
• Capacitance (C) is related to mini-bathtubs along the hose
• Inductance (L) is related to… water wheels along the hose

But inductance has gotten lots of press recently
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Can we ignore inductance?

The truth is, inductance can be exploited if you want to use it
• Sharpen edges of signals, cross-chip I/O, distributed amps

But for wires of typical dimensions, you can safely ignore it
• Realistic wiring systems have L=0.2-0.5nH/mm (FastHenry)
• Short wires don’t care about inductance

– When driver impedance > line impedance: Rt > 2Z0

• Long wires don’t care about inductance
– When attenuation factor > 1: 0.5*Rwire > Z0

It is worth considering for clocks and power grids, but not signals
• Especially for differential signals!
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The truth is, inductance can be exploited if you want to use it
• Sharpen edges of signals, cross-chip I/O, distributed amps

But for wires of typical dimensions, you can safely ignore it
• Realistic wiring systems have L=0.2-0.5nH/mm (FastHenry)
• Short wires don’t care about inductance

– When driver impedance > line impedance: Rt > 2Z0

• Long wires don’t care about inductance
– When attenuation factor > 1: 0.5*Rwire > Z0

It is worth considering for clocks and power grids, but not signals
• Especially for differential signals!

< 2mm for 180nm
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Can we ignore inductance?

The truth is, inductance can be exploited if you want to use it
• Sharpen edges of signals, t-lines, distributed amps

But for wires of typical dimensions, you can safely ignore it
• Realistic wiring systems have L=0.2-0.5nH/mm (FastHenry)
• Short wires don’t care about inductance

– When driver impedance > line impedance: Rt > 2Z0

• Long wires don’t care about inductance
– When attenuation factor > 1: 0.5*Rwire > Z0

It is worth considering for clocks and power grids, but not signals
• Especially for differential signals!

> 2mm for 180nm

< 2mm for 180nm
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What does wire scaling tell us?

• CAD tools dealing with wires need to improve
– Even for scaled-length wires Æ chip complexity growing

• We need to design wire-centric circuits
– Contain noise effects, avoid sensitivity to variations

• We need to build wire-aware architectures
– Accept that long wires are slow, and design around them
– Avoid “70% of our cells are repeaters” (Saxena, ISPD ’02)

• We ought to move towards modular machines
– Computation relies on local, not long-range, communication
– Use huge available bandwidth of the long-range wires
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Outline

First, review basic wire scaling trends
• Pay attention to hot-button topics like noise and inductance

Consider high-performance CPU trends
• Focus on frequency, power and cost  

Look at where all of these trends are taking us
• Examine the kinds of machines VLSI wants us to build

Ask: what’s wrong with this picture?
• Break the wire scaling paradigm with Proximity Communication
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Can we maintain high-performance trends?

Gains come from architecture (CPI) and circuits (frequency)

SpecInt2000
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We’ve pushed pretty hard on frequency

This trend is faster than underlying technology improvements!

Clock Frequency

10

100

1000

10000

85 87 89 91 93 95 97 99 01 03 05

i ntel  386 i ntel  486 i ntel  pent i um i ntel  pent i um 2

i ntel  pent i um 3 i ntel  pent i um 4 i ntel  i t ani um A l pha 21064

A l pha 21164 A l pha 21264 Spar c Super Spar c

Spar c64 M i ps HP PA Power  PC

AM D K6 AM D K7 AM D x86-64



SLIP 2005 30R. Ho, Sun Labs

Normalize frequency to process

Circuits have indeed gotten faster, relative to underlying technology
• Wait…doesn’t this curve eventually hit 0?

Cycle in FO4
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Cycle times in FO4 will level out

FO4 cycle times have fallen pretty far
• 16 FO4 per cycle in Intel short-tick machines (Pentium4)

They probably won’t fall much further
• Fast clocking becomes too onerous in both power and timing
• A timing signal faster than 8FO4 is practically a sine wave

There is some disagreement on the actual limits
• 6-8 FO4s optimal for performance (Hrishikesh, ISCA ’02)
• 18 FO4s optimal if you include overhead (Srinivasan, ISM ’02)

Frequency scaling will throttle back to “what the process gives us”
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So push on CPI for performance scaling?

I’m not an architect, nor do I play one on TV
• But I can see that not much more ILP is available

– Even exploiting the ILP that we can see is expensive
– Cost of finding more is prohibitive

• And creating parallelism through speculation is costly
– Very power inefficient to do work that we’ll throw away

Instead, architectures are moving to thread-level parallelism (TLP)
• Multiple compute cores with loosely coupled control
• Global packets get scheduled/routed between cores

– High latency, yes, but also high bandwidth
• The networks-on-a-chip model
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Power trends of high-performance machines

Slide is long in the tooth and overused, but it gets the point across
• Avoiding high power density has become a design priority

Source: Gelsinger, Intel, ISSCC2001
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More on power trends

Today’s CPUs are already power constrained
• More performance is available in our chips

– If we could afford to dissipate the heat 
– If we could carry (lug) the energy around in batteries

Supply voltage has stopped scaling with channel length
• Due to Vdd versus Vth concerns, performance and leakage
• Power = CV2f
• We’ve gotten off of the “constant power density” track
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Managing power

The old VLSI question: “What do you do with a billion transistors?”
• The new VLSI answer: “Don’t run them all at once!”

We should build modular machines with lots of compute cores
• Don’t power them all on, all at once

– Just the ones specific to your application
– A high-bandwidth global interconnect moves data around

• An opportunity for specialization in the modular cores
– Different applications use different mixes of functional blocks
– Exploit this reconfiguration in the architecture
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What’s the cost of money?

Complexity drives design costs (Gartner/Dataquest 2003)
• 180nm ASIC averages $4M in design costs
• 130nm ASIC averages $10M in design costs
• 90nm ASIC averages $25M in design costs

Complexity drives design team size (Sematech 2002)
• Transistors/die growing at a 68% CAGR
• Productivity (transistors/person-month) growing at 21% CAGR

And don’t forget the mask sets: $0.75M in 90nm and getting worse

Who can afford to build a big chip today? Tomorrow?
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Managing costs

Blind extrapolation says
• Only Exxon and Wal-Mart will be able to afford to build CPUs

The solution? Build universal computing chips
• More flexible than today’s CPUs

– Integer code, streaming code, vector code, microkernels...
• Fast like a dedicated ASIC – or at least within a factor of 2-3x

– Certainly faster than an FPGA

Build this machine with… (you guessed it) reconfigurable modules 
• Local fast computation within each module
• Slow but high bandwidth global communication
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Outline

First, review basic wire scaling trends
• Pay attention to hot-button topics like noise and inductance

Consider high-performance CPU trends
• Focus on frequency, power and cost  

Look at where all of these trends are taking us
• Examine the kinds of machines VLSI wants us to build

Ask: what’s wrong with this picture?
• Break the wire scaling paradigm with Proximity Communication
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Lots of trends point in the same direction

• Wire scaling pushes us towards modular machines
– Rely on local wires for computation
– Explicit high latency and high bandwidth of global communication

• Architecture scaling pushes us towards modular machines
– ILP is largely mined out in big monolithic machines
– Modularity exploits thread-level parallelism

• Power scaling pushes us towards reconfigurable modular machines
– We can’t power our transistors all at once, anyway
– Modularity enables an application-specific functional mix

• Cost scaling pushes us towards reconfigurable modular machines
– Reconfigurability allows for universal computing systems
– Modularity allows for greater range of reconfigurability
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Have I mentioned “modular machines”?

What do I mean by a reconfigurable modular machine, anyway?
• Subdivide die into individually enabled functional blocks

• Blocks are not identical and can be reconfigured 
– Memories that can look like a cache, a RAM, or a buffer
– Adders that do 64b, and four saturating 16b, and so on…
– Multipliers that do multiply, XOR-multiply, and MACs

• Communication between blocks has architecturally explicit delay
– Latency visible to the programming model
– Lots of bandwidth available to be used
– Network-on-a-chip with static or dynamic routing
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People are building what VLSI wants

Lots of work in academia
• MIT Raw project: a scalable microprocessor with 16 tiles
• Stanford Smart Memories: 64 compute tiles w/mesh network
• Stanford/MIT Imagine chip: 8 compute clusters, stream registers
• UT-Austin TRIPS: Systolic-like compute array in “malleable” grid

And movement in this direction in industry
• Multi-core processors are explicitly modular

– Sun, IBM Power5, Intel Montecito and P4D, Fujitsu and AMD
• Chip-multi-threading is the next step in this chain

– Sun’s Niagara
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Outline

Review of wire scaling trends
• Paying attention to hot-button topics: noise, inductance

Overview of high-performance trends
• What is driving our fast CPUs?

Look at where these trends are taking us
• Building machines that VLSI wants us to build

What’s wrong with this picture?
• Breaking the wire scaling paradigm w/ Proximity Communication
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So far, so good?

VLSI wants us to build big modular chips
• To overcome the disparity between on-chip and off-chip BW
• Raw = 330mm2, Montecito > 500mm2, Niagara ¼ 340mm2

If you split functionality between chips your performance suffers
• Global on-chip wires may be slow, but they have big bandwidth
• Chip-to-chip wires are both slow and low bandwidth

– Can’t have that many high-speed serial links 

Big chips maximize the available functionality
• With more blocks, the reconfigurability can be more universal
• With more blocks, the overall performance can be higher
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The drawback of size

But big chips put us on the wrong side of economics
• Die size and yield are not compatible
• Big chips are awfully expensive

Take the modular machine notion to its natural extreme
• Wafer-scale integration (uh-oh)
• Nobody has made the economics of 0 yield work yet

The underlying problem
• “Impedance mismatch” between on-chip and off-chip bandwidth
• Gets worse with interconnect scaling
• Driven by high-performance VLSI trends
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Break the interconnect scaling paradigm

What if we could match off-chip bandwidth to on-chip bandwidth?
• Make your modular machine out of smaller discrete chips

– Retain high bandwidth long-range communication
– Some additional global latency acceptable (it’s slow already)

Benefits?
• Modularity still fits with scaled wire delay and TLP

– Keep the same overall performance
• Reconfigurability turns into application-specific assembly

– With much less overhead
• Individual die costs are far lower

– Not all of the chips need to be at the same technology



SLIP 2005 46R. Ho, Sun Labs

Proximity Communication

A chip-to-chip signaling scheme from Sun Labs
• Make capacitors out of two metal pads on two adjacent chips
• Place them face-to-face and send data across the capacitor
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Size of Proximity Communication structures

Pads are small and can be packed with very high density
• Under scaling, they keep a density advantage over area balls

36um
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Benefits of Proximity Communication

Provides high-bandwidth off-chip communication 
• Metal pads are made of on-chip structures that scale
• Off-chip bandwidth tracks on-chip bandwidth
• Allows modular machines to be built from separate (small) die

Avoids conductive/permanent attachment between chips
• Much lower power because we can safely omit ESD structures
• Die can be easily tested, assembled, removed and replaced
• Application-specific die configurations are possible

Offers a physical substrate for modular reconfigurable machines
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Challenges of Proximity Communication

Mechanical misalignment degrades communication channels
• Static (assembly) and dynamic (thermal or vibrational) important
• Physical alignment structures become critical to the architecture

Capacitors block transmission of DC levels
• Need biasing at the receiver

Channel requires amplification of small-swing signals
• Capacitive divider gives signals ¼ 10% of supply
• Swing also dependent on Z-axis misalignment (separation)
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A sample Proximity circuit

Receivers use weak feedback to bias the input around Vtrip

• This circuit example uses an unclocked receiver
• Clocked amplifiers provide more sensitivity at complexity cost
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Dealing with misalignment

Data-steering circuits dynamically fix in-plane misalignment
• Transmit pads are more numerous and finer than receive pads
• Misalignment verniers (not shown) detect required steering
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Testing Proximity Communication chips

Place chips face-to-face with six-axis positioning system



SLIP 2005 54R. Ho, Sun Labs

Proximity Communication status

Working silicon shows channels communicating 
• Bit periods of 6 FO4
• Transmission power on par with on-chip wire power dissipation
• Pad sizes around 300λ on edge
• BER < 10-12 (currently limited by test instrumentation)

Currently working towards:
• 100s or 1000s of pads at densities > 2000 pads/mm2

– Off-chip bandwidth that matches on-chip wire bandwidth
• Asynchronous handshaking control for robustness

– Off-chip protocol that matches on-chip async networks
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What Proximity Communication gives us

Offers us off-chip bandwidth that matches on-chip bandwidth
• Breaks today’s interconnect scaling paradigm (in a good way)

Allows us to consider dividing large die into smaller die
• With no large power, delay, or bandwidth penalties

Enables systems made of many such small die facing each other
• Chips can be from different technology generations
• Chips can be easily tested, inserted, removed and replaced

Let us ask interesting questions
• What kind of system should I build with this kind of off-chip BW?
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How this helps our scaling story

We can still build what technology trends push us to build
• Wire delays argue for modularity (scaled- vs. fixed-length wires)
• Architectures argue for modularity (TLP beats out ILP)
• Power argues for modularity (only enable what you need)
• Cost argues for modularity (build reconfigurable systems)

With Proximity Comm. modular systems aren’t huge and costly
• They’re made up of numerous small chips
• Chips replaceable per application or per reliability requirements

All we need to do
• Finish the research on Proximity Communications ☺
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Summary

Examined wire scaling and also architecture, power, cost curves
• All pushing us towards modular reconfigurable machines

The problem is, top-performance modular ULSI chips will be huge 

Fundamental issue is a mismatch between on-chip and off-chip BW
• Driven by trends of high-performance ULSI

Proximity Communication offers to match on-chip and off-chip BW
• Promising area of research currently studied at Sun Labs
• May enable cost-effective modular, reconfigurable systems

http://research.sun.com/async


