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Outline

= Background and problem description

= Prior work

This work

— Modeling realizable patterns of activity
— Determining peak voltage variation

— Determining bounding timing conditions

— Applications to design planning

Remaining issues
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Power supply networks as System-Level Interconnect

= Power supply networks do communicate information

— Power demand in one place affects voltages in others

Northeast blackout
August 14, 2003

SLIP 2005 April 2, 2005 © 2005 IBM Corporation




IBM Microelectronics

Problem addressed

= Determine maximum impact of transient power supply noise on chip
timing
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Why is this becoming more important?

= Power density is increasing (again)
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Why is this becoming more important?

= Delay sensitivity to supply voltage is increasing
— Due to voltage reductions needed to contain power density
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Power Supply Noise — Voltage Response

A trivial network model demonstrates key noise characteristics:
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What is the “circuit’s view” voltage response to the switching current
signature illustrated above?
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Delay dependence on voltage

= Traditional models use a single supply voltage per gate
— Reality is more complicated

Drive (& hence delay)
of gate G2 is a
function of Vdd & Gnd
of both G1 and G2

Most power supply
noise is differential
(Vdd drops as Gnd
_________________________ rises)
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Why is it hard to find the worst timing impact?

= Nailve approach
— Determine worst voltage at each node (max Gnd, min Vdd)

— Time circuit with these voltages
= Problems

— Timing test compare early/late clock/data
— Worst slack (for setup test) when data is slow relative to clock

Max voltage drop Max voltage drop gradient
Max delay Worst slack

10 | SLIP 2005 April 2, 2005 © 2005 IBM Corporation



IBM Microelectronics

Outline

= Background and problem description

= Prior work

This work

— Modeling realizable patterns of activity
— Determining peak voltage variation

— Determining bounding timing conditions

— Applications to design planning

Summary
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Use superposition to determine worst timing

= Vectorless Analysis of Supply Noise Induced Delay Variation,
S. Pant, D. Blaauw, et. al., U. Michigan, ICCAD 2003

— Bound current demand at each power network node
— Simulate current impulse applied at each power network node
— Model delay linearly with voltage

— Use delay model & power network response to model path delay
as function of current at each node in each cycle

— Use linear optimizer to determine current profiles which give
worst path delay

— Use spatial and temporal superposition of voltage waveforms
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Spatial superpositioning

= Compute voltage waveforms for different aggressors

= Add selected waveforms with no time shifting
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Temporal superpositioning

= Compute voltage waveforms for one cycle of each aggressor (simulate until
transients die out)

= Add time shifted copies of waveform to get impact of operation over many
cycles
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Use superposition to determine worst timing
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Limitations of prior work

= Cannot easily restrict analysis to realizable activities

— Allows only linear constraints between current weights

= Path-oriented analysis
— Subject to exponential path enumeration issues

= Assumes constant voltage within cycle

— Loses high frequency variation
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Constraints on realizable activities

= Example — either banks 0 & 1 switch or bank 2 switches or bank 3
switches

= Banks with worst effect differ for
paths pl and p2

= Cannot constraint total switching
— S(0) + S(1) > S(2) or S(3) alone

Cannot constrain relation between
banks

— §(0), S(1) > S(2) for p1
— S(2) > S(0), S(1) for p1

= Selection of worst banks is not a
linear problem

N
N
[
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Constraints on realizable activities

= Example — clock dithering to limit noise from clock gating
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Outline

= Background and problem description

= Prior work

This work

— Modeling realizable patterns of activity
— Determining peak voltage variation

— Determining bounding timing conditions

— Applications to design planning

Summary
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Overview of our approach

20

Identify “objects of interest” (OOIs)
— Large or high power cores of SOC
— Regions of random logic

Simulate voltage drops due to each OOl

Determine allowable patterns / sequences of activity for OQOls
— Modeled as BDDs

Determine max / min v(t) for each node
Use min / max v to screen, find critical subnetwork

Use block-based statistical timing with OOl activities as variables to
refine timing

Determine worst slack for each timing test within allowable
sequences

Reanalyze paths with nonlinear delay dependencies to validate /
refine slacks
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Simulating OOl currents

= Use fast linear power grid simulator

— Uses fixed time step, explicit matrix inversion

- Initial overhead
— Allows very fast simulation of many waveforms

— Changing OOl currents, location of application is very fast

— Changing power grid (or adding decoupling caps) is slower
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Modeling allowable conditions

= Determine set of conditions which must be met
— Model as Boolean functions of OOI activity in different cycles

— Examples

* No more than k of n memory banks switch in one cycle
+ Clock cannot have X cycles off followed by Y cycles on

= Represent AND of all conditions as BDD
— One BDD for all chip constraints
— Variables are activity of OOls in particular cycles

— Subsequent steps depend linearly on BDD size

— ... SO aggressively reorder for minimum size
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Finding extreme voltages

= DFS traversal of constraint BDD
— One traversal per node, per alignment in cycle

— Assign weights to BDD variables based on voltage of node at alignment time
due to OOI switching in a particular cycle

— Determine extreme (min/max) value at each node
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Finding extreme voltages

= For each node / alignment
— AV, = delta voltage when OO, is active

— Min value V_,,(n) at BDD node n with variable I(n), children cO(n), c1(n):

min

Ochild ./~ r ’/X Variables
value I(n)-1 ) skipped by
min (CO(n) + Z min(o; AV, ), 0 edge

: i=1(cO(n))+1
Vmin (n) = mme > I(n)-1 N
V- (c1(n)ﬂ+ AVt > min(0, AV,;)

V

: : Variables
1 child =I(c1(n))+1
valie _LLL/‘ § i=l(c1(n))+ \_j/- skipped by
1 edge
— Vpin(0)=infinity, V,;,(1)=V Contribution
mln( ) y mln( ) nom Of th|S OOI
— V., Of root is min realizable voltage switching

— Similar form for max voltage
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Finding extreme voltages
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= Example

V, =-0.1

V,=-0.25

V,;=+0.18

Node / offset 1
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Finding extreme voltages

= Example
V,=-0.15
V,=-0.15 1.48
Vy=+0.13 163
Node / offset 2 -infinity
26 | SLIP 2005

1.33

*
*
*
\d
*
*
*
*
’Q
*

April 2, 2005

1.5

© 2005 IBM Corporation



1
I
.||I|

IBM Microelectronics

Application to timing

1. Use min (late) / max (early) voltages to filter errors

2. Apply block-based statistical timing to remaining regions
= Delay / Arrival times / slacks are functions of OOl activity
a, + yAX, +a,AX, +---+a AX +a AR,
= Max / min propagated statistically
= Sample waveform voltages at mean arrival time

= Result is slack equation for each test

= Find worst slack by BDD traversal
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Block-based statistical timing

= Deterministic

= Statistical
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Waveform sampling for delay calculation

1. Get arrival time t 3. Compute delay 4. Get arrival time t 6. Compute delay

., 2. Get V(1) N 5. Get V/(t) _

g/
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Applications to Design Planning

= Get OOl locations from floorplan

= Determine extreme voltages
— Detailed paths not yet known, so can’t apply to timing

— Impose bounds on voltage

= Modifications to fix errors

— Add decoupling caps
* Only useful for short transient limit violations
— Move OOls

— Impose restrictions on allowed activity patterns
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Updating voltage extremes

Object movement

Activity
medium constraint
l changes
OOl current
location \ fast
Power grid | OOl activity
simulations | restriction
Power grid /
model build

]

Power grid Decap
changes changes
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(Some) remaining issues

Current depends on voltage

— Ignored by superposition approach

Block-based statistical timing may not apply well
— Need to validate predicted worst activity patterns

— Fall-backs - use path-based approach

Picking the right set / granularity of OOls

Determining activity constraints
— Need links to system-level modeling
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