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Evolution of Systems design

e VLSI systems get ever more
complicated

e More software, processor IP blocks,
hardware/software co-design

e Ad-hoc global wiring > Network-on-
Chip (“communication IP block”),
long wires - packets

« What with Rent’s rule?

e




Rent’s rule: power law relation

components (G)
VS.
terminals (T)

T =tG" [1]

circuits
wires

e

Rent’s Rule
log T,B

processors (N)

VS.
bandwidth (B)

B = bN" 2]

processor cores
networks-on-chip

[1] Landman and Russo, IEEE Trans. on Computers, 1971
[2] D. Greenfield et. al, NOCS 2007.



Multiprocessor + Network architecture
Shared memory: network is part of memory hierarchy

supercomputer

CPU MEM CPU MEM

CPU MEM CPU MEM
TR LR

NetlF NetIF
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NoC design: problems and opportunities

e Simple traffic models: uniform,
hot-spot, fixed bandwidth distribution

- Ignores locality, time-variance in network
traffic

- Yields non-optimal NoC designs (uniform
vs. non-uniform, static vs. reconfigurable)

e Opportunity: better traffic models,
analytical tools vs. trial-and-error
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Partitioning nodes by
communication intensity

e Hierarchically partition nodes according
to communication (hMETIS)

o Just as for wires, but:

« Communication graph is usually fully connected

« Weight on each connection
= total communication between node pair

e Fit power law on
(cluster size, bandwidth) distribution
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Communication fraction

“Wire length” distribution

Distribution of communication vs. distance

distance(A, B) =

=
*
[

B.81

cholesky, 64 nodes
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b = 428,51
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Distance

Conspunication fraction

a.1 3

8.81

log2(size of smallest cluster containing both A and B)

radix, 64 nodes
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Communication varies through time

e Hardware:
- fixed function
- traffic remains similar through time

e Software:

- more complex, different phases
(e.g. function call)

- communication patterns can change
trough time
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Communication varies through time

e Repeat partitioning per interval of 100k clock cycles
e Periods of high and low communication alternate
e Rent exponent badly
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Communication varies through time

e Repeat partitioning per interval of 100k clock cycles
e Periods of high and low communication alternate

e Rent exponent badly
defined during
periods of low
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Node placement vs. variable traffic

e Node partitioning can lead to optimal node
placement (minimal communication distances)

e But: varying traffic - varying optimal
placement?

o Compute interval similarity, based on
partitionings

e Account for traffic intensity (moving non-
communicating nodes has no effect)
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Similarity of communication
between intervals

e For time intervals X and Y, each with traffic pattern
traffic and optimal partitioning part

e part[X] cuts minimal fraction of traffic[X]

e assume we use part[X] in interval Y, what fraction
of traffic[Y] is cut? = cut[X,Y]

e always more than part[Y] would = cut[Y,Y]

e similarity of partitionings, accounting for traffic
intensity:

_ cut[ X, X]+cut[Y,Y]

Smx.Yl cut[Y, X]+cut[ X, Y]
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Similarity measure properties

_ cut[ X, X]+cut[Y,Y]
cut[Y, X] +cut[ X,Y]

sm X, Y]

e cut[X,X] < cut[Y,X] and cut[Y,Y] < cut[X,Y]
-> 0 <sim[X,Y] < 1

e SiM[X,X] = 1

e when traffic[X] >> traffic[Y]:
cut[*,Y] ~ 0 > sim[X,Y] ~ cut[X,X]/cut[Y,X]
(only dependent on traffic[X])

e
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Similarity matrix: FFT
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Similarity matrix: Water

water.sp, 64 nodes
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Suitability of a single placement

e Static network > one single placement
e How suitable is this placement through time?

« Suitability measure: based on partitionings
(as are placements)

e Optimal partitioning for traffic[X]:
part[X], cutting a bandwidth cut[X,X].

e Suitability of partitioning P:
cut[X,X] / cut[P,X]
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Suitability of a single placement
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Conclusions

e Measuring Rent exponents:

- small number of nodes: difficult to measure, lots
of noise

- shared-memory: implicit communication, lots of
non-essential communication - better/other
results with message-passing?

o Still, difference in locality is visible, can be
traced back to the benchmark’s algorithm

e Time-variant communication!

e Rent’s Rule (partitioning) is helpful to study
communication behavior
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