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 Bandwidth version of Rent’s rule (Greenfield et al., 2007)
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Rent’s rule for parallel programs

 Measuring Rent’s rule in CMP 

(Heirman et al., 2008)

 Apply a hierarchical 

partitioning algorithm

 All 13 benchmark applications 

followed Rent’s rule with 

0.55 ≤ p ≤ 0.75



Generating synthetic workloads

 Can we generate synthetic traffic patterns that have 

Rent’s rule properties?

 Fast and simple way to evaluate an NoC design

 More accurate representation of communication locality (CPD) 

than traditional synthetic workloads

 Simulate hypothetical workload scenarios by varying the Rent’s 

exponent
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Rent’s rule traffic patterns

 Assume that Rent’s rule holds in an unbounded Manhattan grid.

 The probability of communication between two nodes with distance 

d apart is? (Adapted from Davis et al., 1998)

For each source node i:

For each destination j:

generate a packet from i to j with probability P(di,j)



Method Validation

1) Generate Rentian traffic using our method



Method Validation

1) Generate Rentian traffic using our method

2) Measure the resulting CPD



Method Validation

1) Generate Rentian traffic using our method

2) Measure the resulting CPD

3) Compare CPD with the wire length distribution in VLSI (Davis et al., 

1998)



Method Validation

1) Generate Rentian traffic using our method

2) Measure the resulting CPD

3) Compare CPD with the wire length distribution in VLSI (Davis et al., 

1998)



Comparison with other synthetic workloads



Comparison with other synthetic workloads



Comparison with other synthetic workloads



Comparison with other synthetic workloads



Comparison with other synthetic workloads



Comparison with other synthetic workloads



Modeling energy consumption using the CPD

 Can we use the CPD to predict the energy consumption 

of an application?

 Energy is roughly proportional to the distance traveled by a 

packet

 Fast and simple way of assessing NoC energy consumption

 Simple way to evaluate application mapping techniques

 Aid in the design of energy-efficient applications
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1) Assume that energy is linear with distance:

2) Energy density:

3) Total energy:

Energy Model



Experiments

 Make energy predictions using our model

 Compare with simulations using Orion

 8x8 (65nm) and 10x10 (45nm) NoCs

 7 synthetic traffic patterns
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Varying the Rent’s exponent

 What is the impact of the Rent’s exponent on energy 

consumption?

 Our Rentian traffic method can be used to represent a continuum 

of application complexity scenarios.

 We will look at NoC energy consumption as a function of the 

Rent’s exponent and size of the system.



Experiments

 Generate Rentian traffic for 0.1 ≤ p ≤ 0.9

 Simulate and measure energy consumption for 6x6, 8x8, 

and 10x10 NoCs
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Conclusions

 The CPD is a simple model of communication locality with many potential 

applications in NoC analysis and design.

 We proposed a method based on Rent’s rule that produces synthetic traffic 

with more realistic CPD.

 We proposed an energy prediction model based on the CPD with excellent 

results. For traffic that follows Rent’s rule, energy can be estimated directly 

from the Rent’s exponent!

 Using our Rent’s rule traffic model, we verified that communication locality 

has a large (non-linear) impact on energy consumption. This impact will be 

higher for larger systems.
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