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Global Wiring Paradigm
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Improved Interconnects

— Changes to surrounding material
— High conductivity metals
— Reverse scaling

— Optical interconnects
— Interconnects using nano-tubes

— Radio frequency (RF) interconnects
 Microstrip RF
 Wireless RF



On-Chip Antennas
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K. K. O et. al., “On-Chip Antennas in Silicon ICs and Their Application”, IEEE Transactions
on Electron Devices, vol. 52, pp. 1312 - 1319, July 2005.



Antenna Structures
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K. K. O et. al., “On-Chip Antennas in Silicon ICs and Their Application”, IEEE Transactions
on Electron Devices, vol. 52, pp. 1312 - 1319, July 2005.

M. Bialkowski, and A. Abbosh, “Investigations into intra chip wireless interconnection for
ultra large scale integration technology”, International Symposium of Antennas and
Propagation Society, June 2009.
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Demonstration of Wireless
Clock Transmission
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Challenges for Wireless
INnterconnects

Antenna characteristics under high levels of integration
Radiation effects on metal interconnects

Radiation effects on circuit devices

Wireless system performance under switching noise

Performance comparison with metal interconnects
— Footprint area

— Power consumption

— Delay

— Clock skew and jitter

— Bit-error rate



Objectives

Interconnects on different metal layers
Varying widths of the interconnect
Varying lengths of the interconnect

Varying distance of the interconnects from the
transmitting antenna

Adherence to 90° bend angles on antennas
Presence of high-conductivity epitaxial layer
Varying metal utilization factor



Wireless Interconnect
Analysis

3D FEM based full wave electromagnetic analysis
250nm CMOS technology rules

Die size of 6x4 mm?

Antenna characteristics:

— Meander dipole antenna

— 17GHz operation frequency

— Arm length of 2.4mm

— Antenna separation of 5mm

Transmission gain used as the figure of
merit



Simulation Model

Material Conductivity Relative
(5/m) permittivity
Silicon Dioxide 0 3.7
20 Q-cm Substrate 5 11.9
P-well (epitaxial 800 11.9
layer)
N-well (epitaxial 5300 11.9

layer)

BULK
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Effects of Epitaxial Layer on
Antenna Characteristics

— High conductivity epitaxial layer 8
decreases the frequency range of [
operation £

— P-type epitaxial layer is used for g A e (S
all other simulations (typical of ) icnglit ~“NType Epitaxial Layer (¢ - 2300 S/m)
most 1Cs)

— No Epitaxial Layer
- =P Type Epitaxial Layer (v = 800 S/m)
N Type Epitaxial Layer (o = 2300 S/m)
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Electromagnetic Coupling
Between Antenna and
INnterconnects

— Relatively stable and low
coupling with width

— Decreases with a higher
layer separation
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Electromagnetic Coupling
Between Antenna and
INnterconnects

— Low coupling

— Peaksat a length of
qguarter wavelength of
the EM wave
(=6.8mm/4 = 1.7mm)

: H — 500 1000 1500 2000 2500 3000 3500
(interconnect width = 2um) Interconnect length (um
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Electromagnetic Coupling
Between Antenna and
INnterconnects

— Low coupling

— Decreases monotonously
with a higher separation
between the interconnect
and the transmitting
antenna
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Effects of Metal Utilization
on Antenna Characteristics

= MNo Metal Between Antennas
22% Metal Utilization Between Antennas
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Conclusions 1/2

Decreases with placement in different metal layers
Isunaffected by varying widths of the interconnect

Is very low at small interconnect lengths

Peaks at interconnect length of approximately a quarter of the wavelength of
the electromagnetic waves

Monotonously decreases with an increasing
distance from the transmitting antenna
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Conclusions 2/2

The “essential” high conductivity epitaxial layer
reduces the transmission gain between the
antenna pair by approximately 12dB

The transmission gain between the antenna pair
varies depending on the percentage utilization
of same metal layer of the antenna

— Very high utilization —80%6 a concern?
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Technology Trends
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INnterconnect Networks

effect
INncreases

INncreases

density is
reduced

suffers from higher
voltage drops

Source: Friedman in 1stNoC Workshop
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INnterconnect Capacitive
Coupling

Previous Metal Layer

Source: Friedman in 1stNoC Workshop

 Fringing capacitance increases with scaling

— Spacing between lines decreases
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Crosstalk Noise / Vdd (%)

Geometric Wire
Characteristics

Narrow lines
— RC dominant

— Quadratic delay with
line length
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« Wide lines

— Less noise at the far
end

— Linear Delay with line
length
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Use of Repeaters In
Interconnects
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History of Interconnect
Modeling

Gate delay was _’>—|_\

dominant

Capacitive only

R,,, = RI ;] G =0
Resistive and capacitive PN s WA D
CAZT CAZT c&T

Resistive, capacitive *DOJWVM AL >0

- = CA CAz CAz
and inductive i v i
lene =l Rline =RI Llfne =Ll

Source: Friedman in 1stNoC Workshop 26



Wave Propagation

SEM cross-section

Source: IBM

Local
tungsten
interconnect

Metal lines ; — solder balls

N Oxide

Antenn =Ry Antenna

T / Si Substrat
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Wave paths

Source: K. K. O et. al. in TED
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Effect of Substrate Model

Return loss at the transmitting antenna

Return Loss (§11) (dB)
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Effect of Substrate Model

Transmission gain between the transmitting and receiving antennas
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Simulation Profile: Antenna
with Interconnects

— To study interference effects on antenna
characteristics

— To study radiation effects on metal interconnects

— Measure scattering parameters (s-parameters)
— Calculate transmission gain

— Variance of transmission s-parameter between
transmitting antenna and metal interconnects with
distance
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Simulation Profile: Antenna
with Inverters

— To study interference effects on circuit devices

— Measure electric fields across gate
— Measure electric fields across channel

— Compute radiation induced gate to source and
drain to source voltages

— Compute leakage current
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Antenna Characterization

y)
S‘ 2
G — ‘21 G| A ) 2R
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— Where
G gain of transmitting antenna
« G,= gain of receiving antenna
A= wavelength
 a= attenuation constant
 R= separation between antennas
* S,, 511 5,2 elements of the scattering parameter matrix
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Antenna Characteristics

« Transmission gain increases : .
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Antenna Characteristics

30° Zigzag Dipole Pair

Transmission gain decreases
with increasing

20Q-cm substrate

— Physical structure Sa)) 3-um oxide

|
|
N = mm m \\ith 0.2mm width wired interconnects between Tx and Rx i
RS, ‘;_ w= w = \Yith 0.5mm width wired interconnects between Tx and Rx |

— Simulation structure ‘Tﬁ—

intérconnects

Tx Ant Rx Ant

Si0, -— |

R

Transmission gain(dB)

Distance(mm)

Source: Bialkowski and Abbosh in APSURSI 34



Loop Antenna

— Isotropic radiation
pattern of loop
antenna

270
Loop Antenna

n
K. al. in TED

O et. al. in
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Source: K.
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Variation with Presence of
Metal Interconnects

Minimal affect on transmission gain in intercannects
presence of metal interconnects Tx Ant Rx Ant

AN
Si0; - |

R

Center frequency shifted to a higher
range in presence of metal interconnects

- = yi=0.1mm
- wi=0.5mm

Transmission gain(dB)
Retumn loss(dB)

24 25 26 2 28 o ; 2 2 2 2 25 26
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Source: Bialkowski and Abbosh in APSURSI Source: Bialkowski and Abbosh in APSURSI

36



Simulation Profile: Antenna
with Inverters

Key equations:

— Radiation induced voltage l
P+ N+ N+
[V]RAD [ f RAD P Substrate
Where

e [vlgap = radiation induced voltage
* [Elgrap =2 electric field from antenna radiation
« L =» length of element
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Simulation Profile: Antenna

with Inverters

— Leakage current in sub-threshold region of operation

I, = 1"/ (1— e "o/M 14 4V,

P ubstrate

Where Deglalicn

1. reverse saturation current (& 10-14)

g=>» charge on an electron

k= Boltzman constant

T = temperature (in Kelvins)

A= channel length modulation (ignored)

N = empirical constant

Vps =2 drain to source voltage

Vs = gate to source voltage

I, = leakage current (in sub-threshold region of MOSFET)
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Material properties

Material Conductivity Relgti_v(?
(5/m) permittivity
Aluminum 3.8*%107 1

Silicon Dioxide 0 3.7
(Iizgohﬁyccrlrc‘)pseudbz;[lziéi) > 1.9
P-well (epitaxial layer) 800 11.9
N-well 2300 11.9
P*/N* (active regions) 62500 11.9

SILICOX DI-OXIDE

F.WELL | EPITAXIAL LAYER

BULK SUBSTRATE
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