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Objectives

1. Detailed routing delay estimation

2. Accurate (at least better than delay from placement) 

3. Fast look-up table based technique

4. Implement and verify within an industrial flow

[image from wikipedia]
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Challenges in routing delay estimation

1. Metal layer assignment

2. Detours due to congestion and blockages

3. Cross talk from neighboring wires

[image from wikipedia] [image using Brown’s FIB facility]
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Computing wiring delays

fitted Elmore delay 

[TVLSI Chu04]
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 How to know the exact R, C, and 
delay for a routed net given only the 
placement of its nodes?
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Overview of proposed techniques

 Available information after placement:

 Net degree

 Pin locations and capacitances

 Steiner tree length 

“A lack of information cannot be remedied by any 
mathematical trickery,” C. Lanczos 1961.

 Approach:

 Build empirical models and look-up tablesto characterize the 
results of a router on known designs.

 Apply these models to placements of variant or new designs
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Rationale

 Empirical models quantify common-sense physical design 
characteristics:

• Long nets are likely to be routed on top metal layers 

• Nets with larger degrees are likely to encounter more 
congestion  

 Router-specific sorting rules or tie breaking mechanisms lead 
to systematic routing delay characteristics that can be 
captured our method

 Some of the popular estimation methods, e.g., RISA (Cheng93) 
for FLUTE (Chu04) Rectilinear Minimum Steiner Tree are 
empirical and lookup-table driven. 
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1. Delay Sampling (DS)
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 Motivation: source-sink delays depend quadratically on 
the pin-pin placement length

 Construct quadratic formulas in the pin-pin length where 
the coefficients depend on the net degree



99

1. Delay Sampling (DS)

Delay Sampling (DS) 
estimation

net degree source-sink distance

empirical 
formulas

routing delay estimates

Disadvantage: DS does not differentiate 
between two wires of the same length 
belong to nets with the same degree but 
different Steiner length.
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2. Steiner-Aware Delay Sampling (SDS)

Net 1

sink

source source

sink

Net 2

 Steiner-Aware Delay Sampling (SDS) technique improves 
over Delay Sampling by incorporating a net’s total wire 
length into its post-route pin-to-pin delay estimations.
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2. Steiner-Aware Delay Sampling (SDS)

 Using a base design(s), sample the delay for each pin-to-pin
wire, group and then average the delays according to net
degree, pin-to-pin distance, and the Steiner-tree wirelength.

SDS
estimation

source-sink distance Steiner length

LUT

routing delay estimates

net degree
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3. Steiner-Aware RC Sampling (SRCS)

Net 1

sink

source

Net 2

sink

source

The sink pin capacitance could be an important factor that 
differentiate wire delays

 To incorporate sink pin capacitance, it is necessary to
estimate wire resistance and capacitance separately and
then combine appropriate to estimate the wire delay
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3. Steiner-Aware RC Sampling (SRCS): Table 
build-up

R table 
build up

net degree Steiner length

R Table

RC
Report

C table 
build up

net degree Steiner length

RC
Report

C Table

 Build resistance and capacitance LUTs that are function of
net degree and Steiner lengtha
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3. SRCS: Table lookup

source

sink
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SRC Delay 
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4. Scaled SRCS

Net degree Steiner tree resistance
3 100 Ω1

5 150 Ω2

 Motivation: What happens when a query does not match any of 
the entries in the LUTs? 

(4, 120)

R table 
build up

net degree Steiner length

Scaling R factors

RC
Report

C table 
build up

net degree Steiner length

RC
Report

Scaling C factors

 The R & C scaling factor tables provide the necessary  
adjustment to convert an M1 R & C to the true R & C
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4. Scaled SRCS

R factors C factors

scaled SRC delay 
estimates

net degree net degree

routing delay estimates

pin 
capacitance

Compute R & C 
for M1

Steiner 
length
pin-pin 
length

Compute true 
R & C
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Experimental Setup

 Cadence Encounter v4.1 for placement, routing, and RC 
extraction

 Industrial 90 nm technology library
 Four benchmarks:

Circuit #nets #cells Core area (um2)
A (des) 27478 27104 285861

B (aes cipher) 15880 15265 160769
C (s38417) 8558 8529 69713
D (s13207) 2302 2240 21895
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1. Estimator Stability

 Objective:  estimate the stability of our estimators against 
design variants

 Variants are created by introducing blockages in the metal 
layers

Post-routing delay (ns) before and after 
variations
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Stability Comparison of estimation techniques
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 SRCS is best on the original design

 Scaled SCRS is best on the variant with an average 
estimation error ofabout 22% from the routing delay

 The relative estimation error of techniques is consistent 
with their capabilities
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2. Estimator Universality
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 SRCS and scaled SCRS provide delay estimations with an 
average error of 31% and 16%

 Design A (biggest design) is best used for LUT buildup
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Conclusions and future work

Conclusions:

 Provide a variety of techniques to handle delay estimation.
Scaled Steiner RC sampling give very good delay estimations
(16%) error.

 All techniques are based on lookup tables that are indexed by
information available after placement.

 Techniques simple and they work

Future Work:

 Estimate the delay of critical paths

 Utilize the results of a fast global router to further improve 
the delay estimates

 Use in a design house or CAD tool where the LUTs are 
continuously improved as populated by routing results data  
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Thank You for your Attention
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Summary of techniques

net 
degree

route 
length

net delay
route steiner

tree length
resistance capacitance

DS

SDS

SRCS

Scaled 
SRCS

Inputs need to build LUTs:

Inputs need to query LUTs and estimate delay:

net degree placement length
placement 
steiner tree 

length
C_sink

DS x x
SDS x x x
SRCS x x x x

Scaled SRCS x x x x
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