

[image: image1.wmf]Dr. Dirk

 

Stroobandt

University

 of 

Ghent, Belgium

Electronics

 and 

Information Systems Department

A 

Priori Wire Length Estimates

Based on Rent’s Rule

Tutorial at the Workshop SLIP’99:

System-Level Interconnect Prediction

Monterey, April 10th - 11th, 1999






[image: image2.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

2

Introduction

The 

digital

 design steps

Logic

 design

Functional

 design

System specification

X=(ABCD+A+D+A(B+C))

Y=(A(B+C)+AC+D+A(BC+D))






[image: image3.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

3

Introduction

The 

digital

 design steps

Physical

 design

Circuit design






[image: image4.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

4

Introduction

The 

digital

 design steps

Packaging 

and 

testing

Fabrication






[image: image5.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

5

Circuit design

Fabrication

Physical

 design

The subject of 

this

 

tutorial






[image: image6.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

6

Partitioning

Floorplanning

 and placement

Routing

Layout compaction

Extraction and verification

Design trajectory for

the physical design step






[image: image7.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

7

Components

 of the

physical

 design step

layout

Layout generation

circuit

architecture






[image: image8.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

8

Part 1: Circuit 

characterization

 

through Rent’s

 

rule

Part 2: A 

priori wire length

 

estimates aid to

 a 

better layout

Tutorial overview






[image: image9.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

9

•

Model 

for 

the circuit and 

for

 the 

partitioning process

•

Partitioning methods

•

Rent’s rule

•

Fractal 

interpretation 

of 

Rent’s rule

•

Extension

: the 

local 

Rent exponent

•

Use 

of 

Rent’s rule 

in CAD environments

•

Conclusions

Part 1: Circuit

 characterization

 

through

Rent’s rule






[image: image10.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

10

External

 

net

Internal

 

net

Logic

 

block

Multi

-terminal 

nets 

have

a net 

degree 

> 2

Circuit model

Pin






[image: image11.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

11

8 

nets

 

cut

4 

nets

 

cut

Model 

for partitioning

Optimal partitioning:

minimal number of nets cut






[image: image12.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

12

Model 

for

 

partitioning

Module

New

 

net

New pin






[image: image13.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

13

Model 

for

 

hierarchical partitioning






[image: image14.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

14

Model 

for

 

hierarchical partitioning






[image: image15.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

15

Model 

for 

hierarchical partitioning






[image: image16.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

16

•

Model 

for 

the circuit and 

for

 the 

partitioning process

•

Partitioning methods

•

Rent’s rule

•

Fractal 

interpretation 

of 

Rent’s rule

•

Extension

: the 

local 

Rent exponent

•

Use 

of 

Rent’s rule 

in CAD environments

•

Conclusions

Part 1: Circuit

 characterization

 

through

Rent’s rule






[image: image17.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

17

Rent partitioning

Constraints are set to:

•

M

max

: maximum

number of 

modules

;

•

P

max

: maximum

number of 

pins per

module

;

•

B

max

: maximum

number of 

blocks per

module

.

Criterion: minimal number

of nets is to be cut.

Procedure:

1) 

B

max

 

is set to a high value;

2) A set of values for 

P

max

 

is chosen;

3) For each 

P

max

, a sequence of 

partitions is chosen by subsequently

lowering 

M

max

 

until the lowest value

which still enables a partitioning;

4) For smaller variations in module

sizes: repeat 2 and 3 for lowest 

B

max

that still results in a viable partition.

Algorithm described in [

Landman

 and 

Russo

, IEEE T. Comp., 1971]
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Heuristic partitioning methods

Overview in [

Alpert

 and 

Kahng

, Integration, the VLSI Journal, 1995].

Four categories:

•

move-based approaches;

•

methods that construct a geometric representation of the problem;

•

combinatorial approaches;

•

clustering-based methods.

Most algorithms are move-based.

Comparison made by [Hagen et al, IEEE TCAD, 1994]: best results

obtained by the “ratio cut” method.

Implementation of ratio cut: [

Wei

 and Cheng, IEEE TCAD, 1991].
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Ratio cut

Goal: find the intrinsic hierarchical clustering.

Therefore: modules should have comparable sizes.

Ratio cut

 =

where 

C

A,A’

 = the cut capacity (two modules: 

A

 and 

A’

).

Clustering property

 of the ratio cut: probability of having

an edge between nodes = 

f

 

Þ

 

E(

C

A,A

’

) = 

f

 |

A

| |

A

’

|.

Ratio should be constant for all cuts in the circuit.

If it is smaller, there are fewer connections than normal.

)

|

'

||

|

(

min

'

,

A

A

C

A

A

A
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Improvement to ratio cut

Actual goal: 

minimize

 the number of 

pins

 per module.

We should use a pin instead of a net count criterion.

External

 multi-terminal

nets lead to only 

one

new pin

 instead of two

when cut.

Preferring external nets

to be cut will indeed

keep clusters together longer.
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Improvement to ratio cut

Solution: use a new ratio value based on pin count:

where 

P

n

 

is the number of new pins created by the cut.

Better partitions are obtained because the total number

of pins for each module is taken into account by the

cost function.

|

'

||

|

A

A

P

R

n

p

=
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Rent’s rule

Rent’s rule 

is a 

result 

of the 

self

-

similarity

 within 

circuits

Assumptions

:

•

 design 

hierarchy 

= 

partitioning hierarchy

;

•

 interconnection complexity 

is 

equal

 at 

all levels

.
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Fractal geometry and fractal dimension

Founder of fractals: [Benoit B. 

Mandelbrot

, 1983].

Fractals are curves, surfaces, ... which have a non-

integer dimension, the 

fractal dimension

 or 

Hausdorff

dimension

.

Definitions

:

The 

diameter

 

d

(

S

) 

of a set 

S

 

in a metric space 

X,d

 

is

defined as the maximum distance in

 

S

 under 

d

.

}

,

:

)

,

(

{

sup

)

(

,

S

y

x

y

x

d

S

y

x

Î

=

d






[image: image28.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

28

Fractal geometry and fractal dimension

Let 

s 

³

 0.

 The

 

Hausdorff

 measure

 

m

s

(

X

) is defined by:

where the 

infimum 

is taken over all coverings 

d

(

S

i

)

£

e

.

If there exists a number 

D

f

 

such that

                           for

                           for

then 

D

f

 

is the 

Hausdorff 

dimension.
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Measuring the fractal dimension

Using the “

box-counting

” method.

Example: UK coastline

Its length 

L

 depends on the length 

l

 of the yardstick one

uses to measure it:

To measure the fractal dimension: put a square lattice

on the map and count the number of boxes that contain

part of the coastline.

The same should be done with a finer lattice.

f

D

Al

l

L

-

@

1

)

(
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Fractal dimension of circuits

Definition

: the 

fractal dimension of a circuit

 is the

(fictitious, not necessarily integer) dimension of a

Manhattan space wherein the circuit can be 

optimally

placed in such a way that scaling the Manhattan space

results in a 

similar scaling of the wire length

.

Property

: when the circuit, placed in a (fictitious)

dimension 

D’

f

 

> 

D

f

, is made unboundedly large, then the

total average interconnection 

length will remain

bounded

. However, in a dimension 

D’

f

 

< 

D

f

, the total

average 

length will grow unboundedly

.
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Fractal dimension of circuits

Fractal dimension describes the scaling 

behaviour

,

hence it must be related to the Rent exponent.

Several relationships have been proposed:

Mandelbrot 

(‘83)

Ferry (‘85), Christie (‘88,‘90,‘91),

Ozaktas

 (‘92), Van

 Marck

 (‘92)

Christie (‘93)

t

f

D

D

r

=

r

D

f

2

3

-

=

r

D

f

-

=

1

1
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Fractal dimension of circuits

In a (non-fractal) dimension 

D

 a 

(hyper)surface

 relates

to a 

(hyper)volume

 

as:

Let us assume that the same applies to fractal

dimensions (

D

f

 

-dimensional space) and consider 

B

 to

be some sort of 

hypervolume 

and 

P

 some sort of

hypersurface

. Then

)

1

(

1

1

-

µ

D

D

S

V

r

D

D

D

r

B

P

P

B

f

f

f
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Û
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        satisfies requirements:

1) for 

D

-dimensional mesh: fractal dimension equals

topological dimension:

(

D

=2, 

r

=1/2; 

D

=3; 

r

=2/3

, ...)

2) more complex circuits have a higher fractal

dimension;

3) a circuit with 

r 

=0

 can be placed in any dimension

with bounded average wire length, hence 

D

f

 

=1

;

4) a circuit with 

r 

=1

 cannot be placed in any dimension

without having an unbounded wire length, hence 

D

f

 

=

¥

r

D

D

D

r

f

f

f

-

=

Û

-

=

1

1

1

Fractal dimension of circuits

D

D

DB

P

1

2

-

=
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Measuring the fractal

dimension of circuits

Rewrite Rent’s rule as a function of the fractal

dimension:

It follows that the 

Hausdorff 

measure for circuits should

be:

Problem: find a metric space such that 

m

s

 is a

(distance) measure. Does it even exist?

D

b

P

B

T

B

÷

ø

ö

ç

è

æ

=

P

B

T

m

b

=

s
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Extension

: the

 local

 Rent exponent

Variations in Rent’s rule:

•

global variations

 (e.g., lower complexity after Technology

mapping of the circuit, duplication);

•

local variations

.

Two kinds of local variations in Rent’s rule:

•

hierarchical locality

: some hierarchical levels are more

complex than others;

•

spatial locality

: some circuit parts are more complex than

others.

Both are deviations from Rent’s rule that can be

modelled 

well.
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Hierarchical locality: Rent’s region II

Causes of region II:

- pin limitation problem;

- parallel to serial

conversion (complexity

is moved from space to

time, number of pins is

lowered);

- coding (input and

output data should be

compact).

1

1

1000

10

10

100

100

P

B

average

Rent’s rule
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Hierarchical locality: Rent’s region II

Way of measuring overall complexity (both in space and

in time) could be: looking at “entropy” of wires.

•

Some attempt was made by Christie in ‘91 by 

modelling

wires as 

fermions

 in an interconnection gas;

•

For region II: entropy should take the function into account.

Important note

: do not use Rent’s rule at the topmost

levels alone to compare circuits (see [

Yazdani

, Ferry,

and 

Akers

, IEEE 

Circ

. & 

Dev

., 1997]). You will not see

Rent’s rule but only Region II.






[image: image40.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

40

Hierarchical locality: region III

For some circuits: also

deviation at low end.

Mismatch between the

available

 and the 

desired

interconnection

complexity.

Only for circuits with logic

blocks that have many

inputs.
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Hierarchical locality: 

modelling

Use 

incremental Rent exponent

 

(proportional to the

slope of Rent’s curve in a single point).

)

(

B

r

b

B

T

P
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log(
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log(
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Spatial locality in Rent’s rule

Inhomogeneous circuits: different parts have different

interconnection complexity.

For separate parts:

i

r

i

b

i

B

T

P

=

35

.

0

80

.

0

2

1

»

»

r

r

Only one Rent exponent (heterogeneous) might not be realistic.

Clustering: simple parts will be absorbed by complex parts.
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Local Rent exponent

Higher partitioning levels: Rent

exponents will merge.

Spreading of the values with

steep slope (decreasing) for

complex part and gentle slope

(increasing) for simple part.

Local Rent exponent

tangent slope of the line that

combines all partitions

containing the local block(s).
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Heterogeneous Rent’s rule

Suggested by (

Zarkesh

-Ha, Davis, 

Loh

, and 

Meindl

,’98)

Weighted arithmetic average of the logarithm of 

P

:

Heterogeneous Rent’s rule

 (for 2 parts):

                               with

2
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Use of Rent’s rule in CAD

Rent’s rule is very powerful as a measure of

interconnection complexity

Can aid in the partitioning process

Is basis for a priori estimates in CAD (see tutorial part 2)

Benchmark generators are based on Rent’s rule
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Rent’s rule in partitioning

Better (ratio cut) heuristic by using 

pin count prediction

[

Stroobandt

, ISCAS‘99].

•

Clustering property of the ratio cut: use Rent’s rule instead of

uniformly distributed random graph.

•

New ratio:

Instead of old ratio:

r

r

r

n

r

B

B

B

B
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Rent’s rule in partitioning

Important (especially in pin-limited designs): 

pin

balancing

 [

Stroobandt

, Swiss CAD/CAM‘99].

•

Minimizing the pin count alone is not enough.
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Additional cost function

for pin balancing:
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Rent’s rule in benchmark generation

Generating benchmarks in a hierarchical way

•

Rent’s rule is used for estimating the number of connections

[

Darnauer 

and Dai, FPGA’96], [

Stroobandt

, 

PhD 

‘98]

•

Other parameters have to be controlled as well:

–

Classical parameters:

*

total number of gates

*

total number of nets

*

total number of pins

–

Gate terminal distribution

–

Net degree distribution

•

Other issues: gate functionality, redundancy, timing

constraints, … [

Stroobandt

 and 

Verplaetse

, ISPD’99].
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•

Rent’s rule 

is 

an 

important 

measure 

of

interconnection complexity within digital

 circuits.

•

Rent’s rule 

is 

solely based on partitioning information

.

•

Rent’s rule 

is a 

result 

of the 

self

-

similarity within

circuit designs.

•

Rent’s

 

rule

 is 

related

 

to

 the fractal circuit 

dimension

.

•

Rent’s

 

rule

 

should

 

be

 

extended

 

to take

 care of

hierarchical

 and 

spatial

 

variations

 of the 

complexity

.

•

Rent’s rule 

is 

useful

 in 

various

 CAD steps.

Conclusions
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Part 1: Circuit 

characterization

 

through Rent’s

 

rule

•

Time 

for 

questions

, 

remarks

, ...

Part 2: A 

priori wire length

 

estimates aid to

 a 

better layout

Tutorial overview
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Introduction
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Why do we need

a priori wire length estimates?

To improve CAD tools for design layout generation.

•

Number of gates + complexity 

Þ

 CAD tools are necessary.

•

CAD tools have to take into account:

–

timing constraints;

–

area constraints;

–

performance;

–

power dissipation;

•

All these constraints: 

wires should be as short as possible

.

•

Importance of wires increases (they do not scale as

components).

•

Estimation at early stage aids the CAD tools in finding a

better solution through fewer design cycle iterations.
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Why do we need

a priori wire length estimates?

To evaluate new computer architectures

•

To adhere to the increasing performance demands, new

computer architectures are needed.

•

Each of them must be evaluated thoroughly.

•

A priori estimates immediately provide a ground for drawing

preliminary conclusions.

•

Different architectures can be compared to each other.

•

Applications for evaluating three-dimensional (

opto

-

electronic) architectures, 

FPGA’s

, 

MCM’s

,...
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Different estimation approaches

A posteriori

 estimation

•

after one or more layout steps;

•

is accurate, can be fast if layout step was mandatory, but

needs a lot of layout information;

•

typical usage: 

routability 

prediction (gate arrays), estimating

channel height (standard cell), evaluating competing

placements, wire length estimation after placement).

On line

 estimation

•

during 

floorplanning 

or placement;

•

less accurate, should be fast, needs lot of information;

•

typical usage: early (bad) placement stop, shorten design

loop.
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Different estimation approaches

A priori

 estimation

•

before placement;

•

must be fast, is less accurate, but needs almost no layout

information;

•

typical usage: obtain rough measures of 

routability

, RC

parasitics

, and/or wire lengths for the 

floorplanner

, early

evaluation of design choices, “

wireload

 models” used in

floorplanning

, recognition of possible bottlenecks.
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Overview of methods

Empirical methods

•

generate equations for physical properties by extracting

information from circuit designs and curve fitting;

•

measurements on benchmark circuits act as predictors for

“typical” circuits.

Procedural methods

•

more detailed aspects, lower level of abstraction, slow;

•

rely on knowledge of the actual design process;

•

mainly for a posteriori, sometimes for on line estimation;

•

Sechen 

(‘87), 

Pedram 

and 

Preas 

(‘89), 

Hamada

, Cheng,

Chau 

(‘92): “Local 

Neighbourhood 

Analysis”.
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Overview of methods

Theoretical methods

•

produce closed form, mathematical descriptions of physical

characteristics;

•

two categories: 

stochastic

 and 

deterministic;

•

stochastic methods:

–

model the interconnection structure as a stationary process;

–

wiring requirements are computed by making assumptions

about the probability distributions of wires;

–

Heller 

et al (‘77), El 

Gamal 

(‘81), 

Sastry 

and Parker (‘86).
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Overview of methods

Theoretical methods

•

deterministic methods:

–

rely on parameters extracted from actual circuit instances;

–

were introduced at the end of the ‘60s;

–

average length of randomly placed 

n

-terminal nets [Gilbert,

SIAM J. 

Appl

. Math. ‘60];

–

lower bound for average length in random graphs [

Donath

,

SIAM J. 

Appl

. Math. ‘68];

–

estimating number of wires in PC-board channels, still random

placement [

Sutherland

 and 

Oestreicher

, IEEE T Com., ‘72];

–

basic research on interconnect requirements was initiated by

Rent (Rent’s rule, early ‘60s), later extensively studied by

Landman 

and 

Russo 

[IEEE T Com, ‘71];
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Overview of methods

Theoretical methods

•

deterministic methods:

–

real breakthrough with the hierarchical method devised by

Donath

 

[IEEE TCAS, ‘79; IBM J. 

Res

. 

Dev

., ‘81];

–

this method has been used and extended by several other

researchers (

Feuer 

‘82; 

Sastry

 and Parker ‘84; Ferry ‘85,

Masaki and Yamada ‘87; 

Gura

 and Abraham ‘89; 

Pedram 

and

Preas 

‘89; Cotter and Christie ‘91; Van 

Marck

 ‘92; 

Stroobandt

,

Van 

Marck

, and Van 

Campenhout

 ‘96; Davis, De, and 

Meindl

‘98);

–

also used for evaluation of 

opto

-electronic architectures

(

Ozaktas

 ‘92; Van 

Marck 

‘94);

–

some estimates of delay, area, power are based on this work.
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The 

three

 

basic models

Circuit model

Placement and routing model

Model 

for 

the architecture

Pad

Channel

Manhattan

 

grid

using Manhattan metric

Cell

|

|

|

|

2

1

2

1

y

y

x

x

d

-

+

-
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Placement and routing model

Optimal

 routing

 = routing 

through

 

shortest

 

path

•

requires

 

channels

 

with

 

sufficiently

 high 

density

•

for multi

-terminal nets: 

Steiner

 trees

This

 

defines

 the 

net 

length

 

for

 

known endpoints

Optimal

 placement

 = placement 

with

 minimal 

total wire

length 

over 

all possible placements

.
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1. 

Partition

 the circuit

 

into

 4 modules of 

equal

 

size

 

such

that

 

Rent’s rule applies

 (minimal 

number

 of 

pins

).

2. 

Partition

 the 

Manhattan

 

grid

 in 4 

subgrids

 of 

equal

size

 in a 

symmetrical

 

way

.

Donath’s hierarchical 

placement model
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3. 

Each

 subcircuit (module) is 

mapped

 

to

 a 

subgrid

.

4. 

Repeat

 

recursively

 

until

 

all

 

logic

 

blocks

 are 

assigned

to

 

exactly

 

one

 

grid

 

cell

 in the 

Manhattan

 

grid

.

Donath’s hierarchical 

placement model

mapping
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Donath’s length estimation

 model

At

 each level

: 

Rent’s rule gives number

 of 

connections

•

number of pins per module directly from Rent’s rule;

•

every connection not cut before (internal net): 2 new pins;

•

every connection previously cut (external net): 1 new pin;

•

assumption: ratio 

f

 = (#internal nets)/(#nets cut) is constant

over all levels 

k

 [

Stroobandt

 and 

Kurdahi

, GLSVLSI’98];

•

number of nets cut at level 

k

 (

N

k

) equals

where 

a

=1/(1+f);

 

a

 depends on the total number of nets in

the circuit and is bounded by 0.5 and 1.

k

k

P

N

a

=
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Donath’s length estimation

 model

Length

 of the 

connections

 at 

level

 

k

 ?

Donath

 

assumes

: 

all connection source

 and

 destination

cells 

are 

uniformly

 

distributed

 over the 

grid

.

Adjacent (

A

-)

combination

Diagonal (

D

-)

combination

l

l
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Results Donath

Scaling

 of the average

length

 

L

 as a 

function
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logic

blocks
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Similar to measurements on placed 

designs.
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Results Donath

Theoretical

 average 

wire

 

length

 

too

 high 

by 

a factor 2

10000

L

G

1

2

3

4

6

5

7

10

100

1000

8

experiment

theory

0






[image: image73.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

73

Wire length distribution

From this we can deduct that

the global distribution should be

proportional to 

l

2r-3

.

Local distributions at each level have 

similar

shapes

 (self-similarity) 

Þ

 peak values scale

.

Integral of 

local distributions

 equals number of

connections.

Global distribution

 follows peaks.
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Enumeration

: 

structural distribution

 (

only

 architecture

dependent

).

 

Occupying probability

 

favours

 short

interconnections

 (

for

 

an

 

optimal

 placement) (

darker

)

•

Keep 

wire length scaling

 

due to

 

hierarchical

 placement

.

•

Improve

 

on

 

uniform 

probability

 

for

 

all

 

connections 

at 

one

level 

(

not

 a 

good

 model 

for

 

an

 

optimal

 placement).

Including optimal 

placement model
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Occupying
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results
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Occupying probability

: 

results

Effect of the 

occupying

 

probability

: 

boosting

 the 

local wire

length distributions

 (per 

level

) 

for

 short 

wire lengths

Occupying prob

.

100

Wire

 

length

percent of

 wires

10

1

0,1

0,01

10

-3

10

-4

10000

1

10

100

1000

per 

level

total

Global

 trend

Donath

1

Wire

 

length

10

100

1000

per 

level

total

Global

 trend

10000






[image: image78.wmf]April 

10th,

 1999

SLIP’99 

tutorial

, Dirk 

Stroobandt

78

Effect of the 

occupying probability on 

the 

total

distribution

: 

more short

 

wires

 = 

less

 long

 

wires

ß

   average

   

wire

 

length

   

is 
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Occupying probability

: 

results
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Occupying probability
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 results
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Extension to three-dimensional grids
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Three-dimensional grids: basic results

Average length converges (for 

G

>>

) up to 

r

 = 2/3 

«

 1/2

Average wire length is lower than for 

2D

 (no long wires)
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Non-hierarchical method

Introduced by Davis, De, and

Meindl 

[IEEE T El. 

Dev

., ‘98].

Number of interconnections at

distance 

l

 is calculated for every

gate separately, using Rent’s

rule.

Three regions: gate under

investigation (

A

), target gates

(

C

), and gates in between (

B

).

Number of connections

between 

A

 and 

C

 is calculated.

This approach alleviates the

discrete effects at the boundaries of

the hierarchical levels while

maintaining the scaling 

behaviour

.
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Anisotropic 

systems
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Anisotropic 

systems

Basic method: 

Donath’s 

method in 

3D

Not all dimensions are equal (e.g., optical links in 

3

rd

 

D

)

•

possibly larger latency of the optical link (compared to 

intra

-

chip connection);

•

influence of the spacing of the optical links across the area

(detours may have to be made);

•

limitation of number of

optical layers

Introducing an 

optical cost
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Anisotropic

 systems

If limited number of layers: use third dimension for

topmost hierarchical levels (fewest interconnections).

For lower levels: 

2D

 method.

2D

 and 

1D

 partitioning are sometimes used to get closer

to the (optimal in isotropic grids) cubic form.

Depending on the optical cost, it is advantageous either

to strive for getting to the electrical plains as soon as

possible (high optical cost, use at high levels only) or to

partition the electrical planes first (low optical cost).
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External nets

Importance of good wire length estimates for external

nets during the placement process:

For highly pin-limited designs: placement will be in a

ring-shaped fashion (along the border of the chip).
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Wire lengths at system level

At system level: many long wires (peak in distribution).

How to model these?

[Davis and 

Meindl

 ‘98]:

estimation based on

Rent’s rule with the

floorplanning

 blocks

as logic blocks.

IMPORTANT!
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Improving

 CAD 

tools for 

design 

layout

Digital

 design is complex

Computer-

aided

design (

CAD

)

More 

efficient layout

generation

 

requires

 

good

wire length estimates

.

A

 priori

 

estimates 

are 

rough

but can already provide us

 a

lot of 

information
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Evaluating

 

new

 computer 

architectures

Estimation

 

for

 

evaluating

 and 

comparing

 different

architectures

Circuit 

characterization

We 

need

 parameters 

to

 

classify

 circuits in 

classes

 and

to

 

optimize

 them

.

Benchmark generation based on Rent’s rule
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Conclusion

•

Wire length estimates 

are 

becoming 

more and more

important.

•

A 

priori estimates can provide 

a lot of 

information 

at

virtually no cost

.

•

Methods 

are 

based on Donath’s hierarchical

placement model and 

on Rent’s rule

.

•

Importance for 

future research: 

how can 

we 

build 

a

priori estimates into 

CAD 

layout tools

?
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Part 1: Circuit 

characterization

 

through Rent’s
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Part 2: A

 priori wire length estimates aid to
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better layout

•
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for 

questions

,

 remarks

, ...

More 

information

 

at 

http

://

www

.

elis

.rug.

ac

.

be

/~

dstr

/

dstr

.

html
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Fractal dimension of circuits

Fractal dimension describes the scaling behaviour, hence it must be related to the Rent exponent.

Several relationships have been proposed:

			Mandelbrot (‘83)



			Ferry (‘85), Christie (‘88,‘90,‘91),

			Ozaktas (‘92), Van Marck (‘92)



			Christie (‘93)
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Placement and routing model

Optimal routing = routing through shortest path

		requires channels with sufficiently high density

		for multi-terminal nets: Steiner trees



This defines the net length for known endpoints

Optimal placement = placement with minimal total wire  length over all possible placements.
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Occupying probability: results
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Part 1: Circuit characterization through Rent’s rule





Part 2: A priori wire length estimates aid to a better layout

		Time for questions, remarks, ...





More information at http://www.elis.rug.ac.be/~dstr/dstr.html
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Design trajectory for

the physical design step

Partitioning



Floorplanning and placement



Routing



Layout compaction



Extraction and verification
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Design trajectory for

the physical design step

Partitioning



Floorplanning and placement



Routing



Layout compaction



Extraction and verification
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Heterogeneous Rent’s rule

Suggested by (Zarkesh-Ha, Davis, Loh, and Meindl,’98)

Weighted arithmetic average of the logarithm of P:







Heterogeneous Rent’s rule (for 2 parts):





                               with
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Donath’s length estimation model

At each level: Rent’s rule gives number of connections

		number of pins per module directly from Rent’s rule;

		every connection not cut before (internal net): 2 new pins;

		every connection previously cut (external net): 1 new pin;

		assumption: ratio f = (#internal nets)/(#nets cut) is constant over all levels k [Stroobandt and Kurdahi, GLSVLSI’98];

		number of nets cut at level k (Nk) equals







	where =1/(1+f);  depends on the total number of nets in the circuit and is bounded by 0.5 and 1.
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Local Rent exponent

Higher partitioning levels: Rent exponents will merge.

Spreading of the values with steep slope (decreasing) for complex part and gentle slope (increasing) for simple part.



Local Rent exponent

tangent slope of the line that combines all partitions containing the local block(s).
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Anisotropic systems

Basic method: Donath’s method in 3D

Not all dimensions are equal (e.g., optical links in 3rd D)

		possibly larger latency of the optical link (compared to intra-chip connection);

		influence of the spacing of the optical links across the area (detours may have to be made);

		limitation of number of



	optical layers

Introducing an optical cost
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Fractal geometry and fractal dimension

Let s  0. The Hausdorff measure ms(X) is defined by:





where the infimum is taken over all coverings d(Si)e.

If there exists a number Df such that

                           for

                           for



then Df is the Hausdorff dimension.
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Measuring the fractal dimension

42 boxes versus 86 boxes.

Increase with factor

Estimated dimension: 1.034
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External nets

Importance of good wire length estimates for external nets during the placement process:











For highly pin-limited designs: placement will be in a ring-shaped fashion (along the border of the chip).
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Extension to three-dimensional grids
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Non-hierarchical method

Introduced by Davis, De, and Meindl [IEEE T El. Dev., ‘98].



Number of interconnections at distance l is calculated for every gate separately, using Rent’s rule.



Three regions: gate under investigation (A), target gates (C), and gates in between (B).

Number of connections between A and C is calculated.

This approach alleviates the discrete effects at the boundaries of the hierarchical levels while maintaining the scaling behaviour.
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Anisotropic systems
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Three-dimensional grids: basic results

Average length converges (for G) up to r = 2/3  1/2

Average wire length is lower than for 2D (no long wires)
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Wire length distribution

From this we can deduct that the global distribution should be proportional to l2r-3.

Local distributions at each level have similar shapes (self-similarity)  peak values scale.

Integral of local distributions equals number of connections.

Global distribution follows peaks.
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Evaluating new computer architectures

Estimation for evaluating and comparing different architectures

Circuit characterization

We need parameters to classify circuits in classes and to optimize them.

Benchmark generation based on Rent’s rule.
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Conclusion

		Wire length estimates are becoming more and more important.

		A priori estimates can provide a lot of information at virtually no cost.

		Methods are based on Donath’s hierarchical placement model and on Rent’s rule.

		Importance for future research: how can we build a priori estimates into CAD layout tools?
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Improving CAD tools for design layout

Digital design is complex



Computer-aided

design (CAD)

More efficient layout generation requires good wire length estimates.

A priori estimates are rough but can already provide us a lot of information.
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Wire lengths at system level

At system level: many long wires (peak in distribution).

How to model these?

[Davis and Meindl ‘98]:

estimation based on

Rent’s rule with the

floorplanning blocks

as logic blocks.

IMPORTANT!





wire length
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External nets

Importance of good wire length estimates for external nets during the placement process:











For highly pin-limited designs: placement will be in a ring-shaped fashion (along the border of the chip).
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Anisotropic systems

Basic method: Donath’s method in 3D

Not all dimensions are equal (e.g., optical links in 3rd D)

		possibly larger latency of the optical link (compared to intra-chip connection);

		influence of the spacing of the optical links across the area (detours may have to be made);

		limitation of number of



	optical layers

Introducing an optical cost












_984765598.ppt


Anisotropic systems

If limited number of layers: use third dimension for topmost hierarchical levels (fewest interconnections).

For lower levels: 2D method.



2D and 1D partitioning are sometimes used to get closer to the (optimal in isotropic grids) cubic form.



Depending on the optical cost, it is advantageous either to strive for getting to the electrical plains as soon as possible (high optical cost, use at high levels only) or to partition the electrical planes first (low optical cost).
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Anisotropic systems
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Three-dimensional grids: basic results

Average length converges (for G) up to r = 2/3  1/2

Average wire length is lower than for 2D (no long wires)





100

10 1000 100000 1e+07
o




% Of Interconnections

100

10

0.1

0.01

0.001

10 100
interconnection length

1000







_984765578.ppt


Non-hierarchical method

Introduced by Davis, De, and Meindl [IEEE T El. Dev., ‘98].



Number of interconnections at distance l is calculated for every gate separately, using Rent’s rule.



Three regions: gate under investigation (A), target gates (C), and gates in between (B).

Number of connections between A and C is calculated.

This approach alleviates the discrete effects at the boundaries of the hierarchical levels while maintaining the scaling behaviour.
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Extension to three-dimensional grids
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Results Donath

Theoretical average wire length too high by a factor 2
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Occupying probability: results
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Occupying probability: results

Effect of the occupying probability on the total distribution: more short wires = less long wires
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Occupying probability: results
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Occupying probability: results

Effect of the occupying probability: boosting the local wire length distributions (per level) for short wire lengths
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Including optimal placement model

Enumeration: structural distribution (only architecture dependent). Occupying probability favours short interconnections (for an optimal placement) (darker)

		Keep wire length scaling due to hierarchical placement.

		Improve on uniform probability for all connections at one level (not a good model for an optimal placement).
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Wire length distribution

From this we can deduct that the global distribution should be proportional to l2r-3.

Local distributions at each level have similar shapes (self-similarity)  peak values scale.

Integral of local distributions equals number of connections.

Global distribution follows peaks.
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Donath’s length estimation model

At each level: Rent’s rule gives number of connections

		number of pins per module directly from Rent’s rule;

		every connection not cut before (internal net): 2 new pins;

		every connection previously cut (external net): 1 new pin;

		assumption: ratio f = (#internal nets)/(#nets cut) is constant over all levels k [Stroobandt and Kurdahi, GLSVLSI’98];

		number of nets cut at level k (Sk) equals







	where =1/(1+f);  depends on the total number of nets in the circuit and is bounded by 0.5 and 1.
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Average interconnection length

Number of connections at level k:



Average length A-combination:

Average length D-combination:

Average length level k:



Total average length:				     with



			 and 2K = G = total number of gates
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Results Donath

Scaling of the average length L as a function of the number of logic blocks G :

Similar to measurements on placed designs.
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Donath’s length estimation model

Length of the connections at level k ?

Donath assumes: all connection source and destination cells are uniformly distributed over the grid.

Adjacent (A-) combination

Diagonal (D-) combination


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Donath’s hierarchical placement model

1. Partition the circuit into 4 modules of equal size such that Rent’s rule applies (minimal number of pins).

2. Partition the Manhattan grid in 4 subgrids of equal size in a symmetrical way.
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Donath’s hierarchical placement model

3. Each subcircuit (module) is mapped to a subgrid.

4. Repeat recursively until all logic blocks are assigned to exactly one grid cell in the Manhattan grid.
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Rent’s rule in partitioning

Important (especially in pin-limited designs): pin balancing [Stroobandt, Swiss CAD/CAM‘99].

		Minimizing the pin count alone is not enough.



Additional cost function

for pin balancing:
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Different estimation approaches

A posteriori estimation

		after one or more layout steps;

		is accurate, can be fast if layout step was mandatory, but needs a lot of layout information;

		typical usage: routability prediction (gate arrays), estimating channel height (standard cell), evaluating competing placements, wire length estimation after placement).



On line estimation

		during floorplanning or placement;

		less accurate, should be fast, needs lot of information;

		typical usage: early (bad) placement stop, shorten design loop.
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Overview of methods

Theoretical methods

		deterministic methods:

		rely on parameters extracted from actual circuit instances;

		were introduced at the end of the ‘60s;

		average length of randomly placed n-terminal nets [Gilbert, SIAM J. Appl. Math. ‘60];

		lower bound for average length in random graphs [Donath, SIAM J. Appl. Math. ‘68];

		estimating number of wires in PC-board channels, still random placement [Sutherland and Oestreicher, IEEE T Com., ‘72];

		basic research on interconnect requirements was initiated by Rent (Rent’s rule, early ‘60s), later extensively studied by Landman and Russo [IEEE T Com, ‘71];
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Part 2: A priori wire length estimates aid to a better layout
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The three basic models

Circuit model

Placement and routing model

Model for the architecture

Pad

Channel

Manhattan grid

using Manhattan metric

Cell
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Overview of methods

Theoretical methods

		deterministic methods:

		real breakthrough with the hierarchical method devised by Donath [IEEE TCAS, ‘79; IBM J. Res. Dev., ‘81];

		this method has been used and extended by several other researchers (Feuer ‘82; Sastry and Parker ‘84; Ferry ‘85, Masaki and Yamada ‘87; Gura and Abraham ‘89; Pedram and Preas ‘89; Cotter and Christie ‘91; Van Marck ‘92; Stroobandt, Van Marck, and Van Campenhout ‘96; Davis, De, and Meindl ‘98);

		also used for evaluation of opto-electronic architectures (Ozaktas ‘92; Van Marck ‘94);

		some estimates of delay, area, power are based on this work.
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Overview of methods

Empirical methods

		generate equations for physical properties by extracting information from circuit designs and curve fitting;

		measurements on benchmark circuits act as predictors for “typical” circuits.



Procedural methods

		more detailed aspects, lower level of abstraction, slow;

		rely on knowledge of the actual design process;

		mainly for a posteriori, sometimes for on line estimation;

		Sechen (‘87), Pedram and Preas (‘89), Hamada, Cheng, Chau (‘92): “Local Neighbourhood Analysis”.
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Overview of methods

Theoretical methods

		produce closed form, mathematical descriptions of physical characteristics;

		two categories: stochastic and deterministic;

		stochastic methods:

		model the interconnection structure as a stationary process;

		wiring requirements are computed by making assumptions about the probability distributions of wires;

		Heller et al (‘77), El Gamal (‘81), Sastry and Parker (‘86).
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Different estimation approaches

A priori estimation

		before placement;

		must be fast, is less accurate, but needs almost no layout information;

		typical usage: obtain rough measures of routability, RC parasitics, and/or wire lengths for the floorplanner, early evaluation of design choices, “wireload models” used in floorplanning, recognition of possible bottlenecks.
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Why do we need

a priori wire length estimates?

To improve CAD tools for design layout generation.

		Number of gates + complexity  CAD tools are necessary.

		CAD tools have to take into account:

		timing constraints;

		area constraints;

		performance;

		power dissipation;

		All these constraints: wires should be as short as possible.

		Importance of wires increases (they do not scale as components).

		Estimation at early stage aids the CAD tools in finding a better solution through fewer design cycle iterations.
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Why do we need

a priori wire length estimates?

To evaluate new computer architectures

		To adhere to the increasing performance demands, new computer architectures are needed.

		Each of them must be evaluated thoroughly.

		A priori estimates immediately provide a ground for drawing preliminary conclusions.

		Different architectures can be compared to each other.

		Applications for evaluating three-dimensional (opto-electronic) architectures, FPGA’s, MCM’s,...
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Introduction
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		Rent’s rule is an important measure of interconnection complexity within digital circuits.

		Rent’s rule is solely based on partitioning information.

		Rent’s rule is a result of the self-similarity within circuit designs.

		Rent’s rule is related to the fractal circuit dimension.

		Rent’s rule should be extended to take care of hierarchical and spatial variations of the complexity.

		Rent’s rule is useful in various CAD steps.



Conclusions
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Part 1: Circuit characterization through Rent’s rule

		Time for questions, remarks, ...





Part 2: A priori wire length estimates aid to a better layout

Tutorial overview
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Rent’s rule in benchmark generation

Generating benchmarks in a hierarchical way

		Rent’s rule is used for estimating the number of connections [Darnauer and Dai, FPGA’96], [Stroobandt, PhD ‘98]

		Other parameters have to be controlled as well:

		Classical parameters:

		total number of gates

		total number of nets

		total number of pins

		Gate terminal distribution

		Net degree distribution

		Other issues: gate functionality, redundancy, timing constraints, … [Stroobandt and Verplaetse, ISPD’99].
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Hierarchical locality: region III

For some circuits: also deviation at low end.



Mismatch between the available and the desired interconnection complexity.



Only for circuits with logic blocks that have many inputs.
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Heterogeneous Rent’s rule

Suggested by (Zarkesh-Ha, Davis, Loh, and Meindl,’98)

Weighted arithmetic average of the logarithm of P:







Heterogeneous Rent’s rule (for 2 parts):
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Use of Rent’s rule in CAD

Rent’s rule is very powerful as a measure of interconnection complexity



Can aid in the partitioning process



Is basis for a priori estimates in CAD (see tutorial part 2)



Benchmark generators are based on Rent’s rule
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Rent’s rule in partitioning

Better (ratio cut) heuristic by using pin count prediction [Stroobandt, ISCAS‘99].

		Clustering property of the ratio cut: use Rent’s rule instead of uniformly distributed random graph.

		New ratio:











	Instead of old ratio:
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Spatial locality in Rent’s rule

Inhomogeneous circuits: different parts have different interconnection complexity.

For separate parts:

Only one Rent exponent (heterogeneous) might not be realistic.

Clustering: simple parts will be absorbed by complex parts.
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Local Rent exponent

Higher partitioning levels: Rent exponents will merge.

Spreading of the values with steep slope (decreasing) for complex part and gentle slope (increasing) for simple part.



Local Rent exponent

tangent slope of the line that combines all partitions containing the local block(s).
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Hierarchical locality: modelling

Use incremental Rent exponent (proportional to the slope of Rent’s curve in a single point).
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Hierarchical locality: Rent’s region II

Causes of region II:

- pin limitation problem;

- parallel to serial conversion (complexity is moved from space to time, number of pins is lowered);

- coding (input and output data should be compact).
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Rent’s rule
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Hierarchical locality: Rent’s region II

Way of measuring overall complexity (both in space and in time) could be: looking at “entropy” of wires.

		Some attempt was made by Christie in ‘91 by modelling wires as fermions in an interconnection gas;

		For region II: entropy should take the function into account.





Important note: do not use Rent’s rule at the topmost levels alone to compare circuits (see [Yazdani, Ferry, and Akers, IEEE Circ. & Dev., 1997]). You will not see Rent’s rule but only Region II.
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Extension: the local Rent exponent

Variations in Rent’s rule:

		global variations (e.g., lower complexity after Technology mapping of the circuit, duplication);

		local variations.



Two kinds of local variations in Rent’s rule:

		hierarchical locality: some hierarchical levels are more complex than others;

		spatial locality: some circuit parts are more complex than others.



Both are deviations from Rent’s rule that can be modelled well.
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Fractal dimension of circuits

			        satisfies requirements:



1) for D-dimensional mesh: fractal dimension equals topological dimension:

(D=2, r=1/2; D=3; r=2/3, ...)

2) more complex circuits have a higher fractal dimension;

3) a circuit with r =0 can be placed in any dimension with bounded average wire length, hence Df =1;

4) a circuit with r =1 cannot be placed in any dimension without having an unbounded wire length, hence Df =
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Measuring the fractal

dimension of circuits

Rewrite Rent’s rule as a function of the fractal dimension:





It follows that the Hausdorff measure for circuits should be:



Problem: find a metric space such that ms is a (distance) measure. Does it even exist?
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Fractal dimension of circuits

In a (non-fractal) dimension D a (hyper)surface relates



to a (hyper)volume as:



Let us assume that the same applies to fractal dimensions (Df -dimensional space) and consider B to be some sort of hypervolume and P some sort of hypersurface. Then
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Rent’s rule

average

Rent’s rule

Rent’s rule is experimentally

validated for a lot of real circuits

and for different partitioning

methodologies.

Rent’s rule is a very important

circuit characteristic.

Deviation for high B and P:

Rent’s region II (cfr. later).
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Fractal geometry and fractal dimension

Let s  0. The Hausdorff measure ms(X) is defined by:





If there exists a number Df such that

                           for

                           for



then Df is the Hausdorff dimension.
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Measuring the fractal dimension

42 boxes versus 86 boxes.

Increase with factor

Estimated dimension: 1.034
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Fractal dimension of circuits

Definition: the fractal dimension of a circuit is the (fictitious, not necessarily integer) dimension of a Manhattan space wherein the circuit can be optimally placed in such a way that scaling the Manhattan space results in a similar scaling of the wire length.

Property: when the circuit, placed in a (fictitious) dimension D’f > Df, is made unboundedly large, then the total average interconnection length will remain bounded. However, in a dimension D’f < Df, the total average length will grow unboundedly.








_984765321.ppt


Measuring the fractal dimension

Using the “box-counting” method.

Example: UK coastline

Its length L depends on the length l of the yardstick one uses to measure it: 



To measure the fractal dimension: put a square lattice on the map and count the number of boxes that contain part of the coastline.

The same should be done with a finer lattice.
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Fractal geometry and fractal dimension

Founder of fractals: [Benoit B. Mandelbrot, 1983].

Fractals are curves, surfaces, ... which have a non-integer dimension, the fractal dimension or Hausdorff dimension.

Definitions:

The diameter d(S) of a set S in a metric space X,d is defined as the maximum distance in S under d.
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Rent’s rule

Rent’s rule is a result of the self-similarity within circuits

Assumptions:

		 design hierarchy = partitioning hierarchy;

		 interconnection complexity is equal at all levels.
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Improvement to ratio cut

Actual goal: minimize the number of pins per module.

We should use a pin instead of a net count criterion.

External multi-terminal

nets lead to only one

new pin instead of two

when cut.

Preferring external nets

to be cut will indeed

keep clusters together longer.
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Rent’s rule

1

1
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100

P

B

average

Rent’s rule

(simple) 0  r  1 (complex)

Normal values: 0.5  r  0.75

Measure for the

interconnection complexity

r = Rent exponent

Rent’s rule was first described by [Landman and Russo, 1971]

For average number of pins and blocks per module:

Tb = average # term./block

Pm = Tb Bm

r
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Improvement to ratio cut

Solution: use a new ratio value based on pin count:







where Pn is the number of new pins created by the cut.



Better partitions are obtained because the total number of pins for each module is taken into account by the cost function.
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Heuristic partitioning methods



Overview in [Alpert and Kahng, Integration, the VLSI Journal, 1995].

Four categories:

		move-based approaches;

		methods that construct a geometric representation of the problem;

		combinatorial approaches;

		clustering-based methods.



Most algorithms are move-based.

Comparison made by [Hagen et al, IEEE TCAD, 1994]: best results obtained by the “ratio cut” method.

Implementation of ratio cut: [Wei and Cheng, IEEE TCAD, 1991].
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Ratio cut

Goal: find the intrinsic hierarchical clustering.

Therefore: modules should have comparable sizes.



Ratio cut = 



where CA,A’ = the cut capacity (two modules: A and A’).

Clustering property of the ratio cut: probability of having an edge between nodes = f  E(CA,A’) = f |A| |A’|.

Ratio should be constant for all cuts in the circuit.

If it is smaller, there are fewer connections than normal.
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Rent partitioning

Constraints are set to:

		Mmax: maximum number of modules;

		Pmax: maximum number of pins per module;

		Bmax: maximum number of blocks per module.



Criterion: minimal number of nets is to be cut.

Procedure:

1) Bmax is set to a high value;

2) A set of values for Pmax is chosen;

3) For each Pmax, a sequence of 	partitions is chosen by subsequently lowering Mmax until the lowest value which still enables a partitioning;

4) For smaller variations in module sizes: repeat 2 and 3 for lowest Bmax that still results in a viable partition.

Algorithm described in [Landman and Russo, IEEE T. Comp., 1971]
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Part 1: Circuit characterization through Rent’s rule



Part 2: A priori wire length estimates aid to a better layout

Tutorial overview
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Model for partitioning





Module

New net



New pin
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Model for hierarchical partitioning


















































































































































































































































































































































































































_984765260.ppt


Model for hierarchical partitioning
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Model for hierarchical partitioning
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Circuit model



External net

Internal net

Logic block

Multi-terminal nets have

a net degree > 2



Pin
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Model for partitioning



8 nets cut

4 nets cut

Optimal partitioning:

minimal number of nets cut
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Introduction

The digital design steps





























Packaging and testing



Fabrication
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Design trajectory for

the physical design step

Partitioning



Floorplanning and placement



Routing



Layout compaction



Extraction and verification
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Components of the

physical design step

layout

Layout generation

circuit

architecture
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The subject of this tutorial























































Circuit design



Fabrication



Physical design
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Introduction

The digital design steps

X=(ABCD+A+D+A(B+C))

Y=(A(B+C)+AC+D+A(BC+D))

































































Logic design



Functional design



System specification
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Circuit design
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