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ABSTRACT

The cell contains numerous networks for information processing.
These networks are responsible for carrying out all cell functions
including gene transcription, signal transconduction, and metabolic
activities. Many of these networks process information similar to
digital logic circuits and classical logic methods have been success-
fully used to analyze their behavior. The objective of this paper is to
investigate the potential of circuit structural analysis techniques in
analyzing the topologies of cellular networks arising in systems bi-
ology context. Rent’s rule has been in particular a classical method
that is used in analyzing the topologies of digital circuits. We in-
vestigate the applicability of Rent’s rule to systems biology net-
works, and we outline the structural similarities and differences be-
tween circuit networks and systems biology networks. We compute
Rent’s rule parameters and classify systems biology networks ac-
cording to their Rent’s exponent. Interestingly, networks that pro-
cess information in a logical fashion have Rent exponents that are
similar to that of logic circuits. To provide a basis for our results we
utilize recent advancements in graph theory to create random artifi-
cial networks with the same degree sequences as real networks and
extend our experiments to those circuits as well. Our results open
the door for other researchers to further investigate topological cir-
cuit analysis techniques for networks in systems biology.

ACM Categories & Subject Descriptors

B.7.1 [Integrated Circuits]: Types and Design Styles
General Terms: Design, Algorithms.

Keywords: Rent’s rule, networks, systems biology.

1. INTRODUCTION

The main purpose of digital circuits is information processing

which is carried out using logic gates and intercommunication wires.

The cell is an integrated device made of thousands/millions of in-
teracting proteins. The cell monitors its internal and external envi-
ronment and accordingly responds using different proteins that ex-
ercise various cell functionalities. The interactions among genes,
proteins and various signal molecules form complex information
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processing networks that map the cell’s signals and molecules into
functions. Cellular networks are at the center of the study of the
field of systems biology [1].

Networks arising from electronic circuits and systems biology
contexts share many similarities. At their core they both process
information. Much of this information processing is carried out
in systems biology in a logical manner (e.g., using conjunction,
disjunction and negation operators) similar to digital circuits. In
both networks computation occurs distributively at the nodes of the
network and communication is carried out between the nodes of
the network to realize the network’s function. In electronic cir-
cuits, metal wires transfer electrons in the circuit for communica-
tion purposes. In systems biology, proteins and various biochemi-
cal molecules floating in the water-based medium of the cell carry
out the required communication. Just as nodes in circuit networks
can be grouped into modules (e.g., flip-flops, adders) based on their
functionalities, nodes in systems biology can be also grouped into
motifs that are used to carry out specific recurring functionalities
(e.g., feed-forward loops and autoregulation).

The recent years have seen a flurry of research into analyzing
the structure of systems biology networks [19, 20, 1]. Previous re-
search focused on many structural aspects of such networks includ-
ing: motif finding, identification of motif functionality, determining
the statistical properties of node degree distribution, and investigat-
ing the applicability of scale-free laws. Given the similarities be-
tween systems biology networks and electronic circuits, this paper
seeks to investigate the applicability of circuit topology and struc-
ture analysis techniques to systems biology networks. In particular,
electronic circuits have shown unique properties as displayed by the
famed Rent’s rule [9, 17]. Does Rent’s rule also extend to systems
biology networks? What are the structural similarities and differ-
ences between systems biology networks and electronic circuits?
These questions and their answers are the focus of this paper. The
main contributions of this paper can be summarized as follows.

e This paper is the first to investigate the applicability of circuit
topological analysis techniques for networks arising in sys-
tems biology. We study the applicability of Rent’s rule for
systems biology networks. We explain the structural similar-
ities and differences between electronic circuits and cellular
networks in systems biology.

e To provide a basis for comparing different networks, we uti-
lize some of the latest results in graph theory to construct
random networks with the same number of edges, nodes and
node degree sequences as the experimented real networks.
We also investigate the applicability of Rent’s rule to these
random networks.



e We provide comprehensive experimental results on large se-
lection of representative networks from systems biology. We
classify these networks based on their functionality, and we
show that the Rent’s exponent range depends on the func-
tionality of the network. Networks that process information
in a logical fashion have Rent exponents that are in the same
range as in electronic circuits.

The organization of this paper is as follows. Section 2 reviews
Rent’s rule as a classical method for structural circuit analysis. Sec-
tion 3 overviews new techniques that synthesize random networks
with the same characteristics as real networks. Section 4 reviews
various network types arising in systems biology contexts. Section
5 provides all experimental results and conclusions. Finally Section
6 summarizes the main results of this paper.

2. NETWORKS IN INTEGRATED CIRCUITS

Rent’s rule is a classical relationship that is observed when ana-
lyzing the structure or topology of computing circuitry [9, 17, 7].
The rule relates the number of external wires emanating from a
block of computational cells to the number of cells within the block
as illustrated in Figure 1. The rule has been observed and validated
on many real circuit designs. It has many applications in circuit
design and implementation including wirelength estimation, con-
gestion estimation and interconnect power estimation [14, 21, 3,
18, 8]. Rent’s rule is a power-law relationship that exists for logic
circuits [9, 17, 10]. Rent’s rule is given by

P=TH, (1)

where

e P is the average number of external nets per block, where a
block is a cluster or partition of cells.

e B is the average number of cells per block.
e 0 <r < 1isthe Rent exponent.

e T is the average number of pins per cell.

The Rent exponent reflects that there is intra-communication among

the cells of a block and thus fewer than 7'B terminals are available
for communication with the external world outside the block. The
higher the Rent exponent, the more complex is the wiring of the
circuitry. Memory structures with local interconnects have low r
values while logic circuits for microprocessors have a r that is usu-
ally in the range of 0.4 —0.7. Generally circuits with mainly local
wires lead to lower r, while circuits with larger shares of global
wires lead to higher r [6, 15].

There are two general approaches to calculate Rent exponent [13,
23]. One method is based on recursive-based partitioners and the
other method is based on placers.

e Partitioning-based Calculators. In this method a min-cut
partitioning algorithm is used to recursively partition the net-
work of cells. At each partitioning level, the average number
of cells per partition and the average number of nets external
to a partition are computed. These pair of numbers constitute
a point on the log-log graph of Rent’s rule. After all points
are plotted, linear regression is used to estimate, r, the rent
exponent.
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Figure 1: Example illustrating the blocks (or partitions), cells
and external nets of a circuit network.

o Placement-based Calculators. In this method a circuit is
placed using some “good" placement algorithm. Then the
placement area is divided into several regions. The average
number of cells per region and the average number of ex-
ternal nets per region are then computed. These two num-
bers constitute a point on the log-log graph of Rent’s rule.
The process of dividing the placement area into regions is at-
tempted with various sizes for the regions to give more points
on the log-log graph. Then the Rent exponent, r, is computed
through a linear regression using the computed points

In this paper we use partitioning-based calculators based on multi-
level partitioners. We build our own Rent calculator based on the
multi-level partitioning tool hMETIS (version 1.5) [16]. For exam-
ple, Figure 2 gives the partitioning results of the s838 circuit from
the ISCAS ’89 benchmark suite [S]. We apply the hMETIS in a
recursive fashion to obtain the average values of P when the av-
erage values of B = 256,128,64,32,16,8,4,2,1 corresponding to
the various levels of recursive partitioner. The plot is in semilog
scale for both axes. The plot can be generally partitioned into two
regions where the first region (Region I) is the one that exhibits the
linear relationship between B and P [7]. As the number of cells
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Figure 2: Rent’s rule plot for the s838 circuit of the ISCAS ’89
circuits.



per block approaches the total number of cells in the circuit, the
number of external nets becomes constrained by the limited num-
ber of I/O terminals at the circuit periphery. This restriction leads
to a rapid reduction in the value of P which defines Region II of the
Rent’s rule plot. The Rent exponent can be calculated using linear
regression from the points in Region 1. From our results the Rent
exponent of this circuit is equal to 0.367. As previously discussed
in the literature [13, 23], the numerical value of the Rent exponent
of a circuit can slightly vary depending on the optimality of the
partitioner or placer used.

3. RANDOM NETWORKS

To provide a basis for comparison, our objective in the section is
construct random networks. Motivated by recent developments in
graph theory, our objective is to generate random graphs with the
same node degree sequences as real circuits in addition to the typ-
ical requirement of having the same number of nodes and edges.
A node here could be either a cell or an I/O terminal. The degree
sequence of a graph is defined as the non-increasing sequence (rep-
etitions allowed) of its node degrees. The outline of the random
graph generation algorithm is as follows [12, 22]:

1. Generate a graph with the given sequence. This step is itera-
tive in nature. The residual degrees of nodes, where residual degree
is the difference between the current degree and the final degree
of a node, is maintained. In each iteration, an arbitrary node u is
picked and edges are added from u to r, nodes of highest residual
degree, where ry, is the residual degree of u. The residual degrees of
u and all affected r, nodes are updated accordingly. The iterations
are repeated until the residual degrees of all nodes are equal to zero.

Before explaining Step 2, a handy lemma is first proven.

Lemma 1. If the graph constructed from the Step 1 is unconnected,
then at least one of the connected subgraphs must contain a cycle.

Proof: Assume the original connected circuit had n nodes. Since
the circuit is connected by definition then it must have at least a
total of n — 1 edges or 2(n — 1) degrees. Assume Step 1 leads to
to an unconnected graph with m connected subgraphs or compo-
nents where each component has n; nodes for i = 1...m. If none
of the components has a cycle then the the total number of edges
in all components is equal to Y7 | (n; — 1) = n—m. This leads to
a contradiction as n — m is less than n — 1 since there are m > 2
components.

2. Connect the graph while keeping all the degrees of its nodes
the same. If Step 1 leads to an unconnected graph then this step
converts the graph to connected one. If the graph constructed from
the previous step is unconnected, then at least one of the connected
subgraphs must contain a cycle as proven in Lemma 1. Let (u,v)
be an edge in that cycle and let (s,7) be an edge in a different con-
nected subgraph. Deleting the edges (u,v) and (s,7) and inserting
the edges (u,s) and (v,r) will merge the two subgraphs into a con-
nected graph. This step is illustrated in Figure 3. Note that the
resulting graph still satisfies the given degree sequence. This step
can be repeated until the entire graph is connected.

3. Switch the edges to make the graph random while still be-
ing connected. The graph can be randomized as follows. Pick two
edges at random, say (a,b) and (x,y) with distinct endpoints. If
(a,x) and (b,y) are not edges then produce a new graph by deleting
the edges (a,b) and (x,y) and inserting the edges (a,x) and (b,y)
as long as this switching operation leaves the new graph connected.
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Figure 3: An illustration of Step 2.
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Figure 4: An illustration of Step 3.

This step is illustrated in Figure 4. Using the switching operation,
any connected graph can be transformed to any another connected
graph satisfying the same degree sequence.

Note that the outlined method can be to generate random syn-
thetic circuits for other purpose like benchmarking or driving phys-
ical synthesis tool chains.

4. NETWORKS IN SYSTEMS BIOLOGY

The cell function is based on complex networks of interacting
biochemical reactions that respond to events inside and outside the
cell environment and produce observable cellular function. These
networks occur at multiple levels including gene-protein interac-
tions, protein-protein interactions, signals-protein interactions and
biochemical interactions for metabolism. In the upcoming subsec-
tions we briefly overview the structure of the major networks inside
the cell.

4.1 Transcriptional Networks

A cell can sense many signals within its internal and external
living environment, and it can respond to these signals by produc-
ing the appropriate proteins. These proteins are produced from ex-
pressed genes within the cell. Transcription factors regulate the
rates of production of proteins by controlling the expression lev-
els of the individual genes that produce the proteins. A transcrip-
tion factor itself is a protein that binds to specific DNA sequences
and thereby regulates the transcription of genetic information from
DNA to RNA (RNA eventually gets translated to protein). For ex-
ample E. coli has about 300 transcription factors that regulate the
rates of production of about 4000 proteins. Transcriptional factors
transit between active and inactive states as determined by the input
signals from the environment.

Figure 5 illustrates the process of gene regulation through tran-
scription factors. In general, genes are transcribed to mRNA when
RNA polymerase binds to the promoter region of a gene. RNA gets
translated to proteins by ribosomes. Transcription factors of a gene
control the binding of RNA polymerase to the promoter region.
There are two possible modes of regulation:

e Activation X — Y. In this case when the transcription factor
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Figure 5: Illustration of gene transcription regulation.

X binds to the promoter region of gene Y, it enables RNA
polymerase to bind to the promoter region. Once the RNA
polymerase is bound, gene Y is expressed and its transcribed
into mRNA. If the transcription factor is not present then
RNA polymerase will not bind to the promoter region and
thus gene Y will be inactive.

e Repression X Y. In this case when the transcription factor
X binds to the promoter region of gene Y, it disables RNA
polymerase from binding to the promoter region. Once the
RNA polymerase is unable to bind, gene ¥ becomes inactive
and no transcription to mRNA occurs. If the transcription
factor is not present then RNA polymerase will bind to the
promoter region and thus gene Y will be activated and the
transcription process to mRNA occurs.

Transcription factors themselves are expressed by genes which
are regulated by other transcription factors, which are in turn reg-
ulated by some transcription factors and so forth. These set of in-
teractions between transcription factors and their target genes form
a transcriptional network. In such network nodes represent genes
and directed edges represent transcriptional regulation of one gene
by another gene. A gene can be regulated by multiple of transcrip-
tion factors. The primary inputs (using circuit terminology) are the
signals that carry information from the external or internal environ-
ment of the cell, and the primary outputs are proteins that act upon
the environment. Transcriptional networks are largely composed
of a small set of network motifs; motifs are patterns of interactions
that significantly recur in these networks than in randomized net-
works [19]. Each motif performs a specific information-processing
role in the network just as logic gate modules perform particular
information processing functions in digital circuits.

Consider the example network of Figure 6 which is part of the
developmental transcription network! of the B. subtilis spore. In
this network:

e Gene Z; is expressed if both the transcription factor expressed
from gene X is active and the transcription factor expressed
from gene Y is repressed or inactive. The transcription fac-
tor expressed from Y; is active (repressed) when the tran-
scription factor expressed from X is active (repressed). The
feed-forward motif consisting of Z;, X; and Y; behaves as
a pulse generator where Z; is expressed for a short duration
only when X is expressed.

'Developmental transcriptional networks govern the fate of cells as
an egg develops into a multi-cellular organism. These networks are
required to create the required differentiation between cells as they
develop into different types within an organism.

e Genes 7, Y» and X, form a feed-forward motif that behaves
as a pulse generator when Xj is expressed. X, is expressed
in turn when the transcription factors expressed from both X
and Y] are activated.

e Gene Z3 is expressed when the transcription factors expressed
from both X, and Y, are active.

4.2 Protein-Protein interaction Networks

Protein-protein interactions are one of the most abundant inside
the cell and they are used to carry out many of the essential cell
functions. Examples of protein interactions include a protein inter-
acting with another protein to form part of a larger protein complex,
or a protein interacting with another protein (say by phosphoryla-
tion) to modify it. In protein-protein interaction networks nodes
correspond to relevant proteins and edges correspond to protein -
protein interactions among the nodes.

Similar to transcription networks, as protein interaction networks
become increasingly large and complex, it becomes more important
to break them down into manageable structural modules or motifs.
These motifs represent clusters of proteins that together contribute
to the same cellular function, where the clustering is derived from

Z Z3

Figure 6: A simplified transcription network that guide the de-
velopment of the B. subtilis spore (adapted from [11, 1]).



the topology of the network [4]. Protein interaction networks func-
tion together with other cell networks (e.g., signal transduction net-
works and transcription networks) and thus these interacting net-
works can be described using one integrated network. For exam-
ple, one protein can modify another protein which allows the latter
to regulate the transcription of a gene, or a transcription factor can
regulate two genes whose protein products interact.

4.3 Signal Transduction Networks

These networks involve the transduction of a signal from the out-
side of a cell to the inside. Signaling networks transmit signals
from the external environment of the cells to the inside of cell, to
the nucleus, or to other cellular organelles and functions [20]. Sig-
nal transduction involves the binding of an extracellular signaling
molecules (ligands) to cell-surface receptors. This binding triggers
intracellular signaling cascades within the cell. The main steps that
occur with signal transduction include: (1) the binding of the signal
molecule (ligand) to an extracellular receptor; (2) the subsequent
phosphorylation of an intracellular enzyme; (3) the amplification
and passage of the signal; and (4) an eventual change in the cellular
function. In signal transduction networks, nodes represent proteins
and molecules and edges represent reactions and processes (e.g.,
ligand binding).

4.4 Metabolic Networks

Cell metabolism is the mechanism that converts raw materials
into energy as well as the elementary blocks needed to produce
biological structures, to maintain cells and to conduct various cel-
lular functions [20]. Metabolic imbalance is associated with major
human disease, such as diabetes and obesity. Metabolism is usu-
ally divided into phases. The first phase is catabolism where input
substrates to cells are broken down into common metabolities, and
the second phase is anabolism that converts the metabolites into
amino acids, nucleic acids and other needed elementary blocks.
A metabolic network shows the interactions between enzymes and
metabolites in a cell. In these networks enzymes and metabolites
form the nodes of the network and interactions between them form
the edges.

4.5 Neural Networks

Neural networks generally do not belong to the category of sys-
tems biology networks; however, we include one such network in
our experimental results. A neural network describes a collection
of physically interconnected neurons whose inputs and output sig-
naling targets define a circuit. Communication between neurons of-
ten involves an electrochemical process. Each neuron interact with
other neurons through several input collections called dendrites,
which are connected via synapses to other neurons, and one output
connection called axon. If the sum of the input signals surpasses
a certain threshold, the neuron sends an action potential that prop-
agates along the axon. Neural networks are used for information
processing in the brain and the nervous system. Our experimental
neural network comes from the c. elegans worm.

S. EXPERIMENTAL RESULTS

In this section we study the applicability of circuit structural
analysis techniques to systems biology networks and to random
network with degree sequences as real networks. We carry out two
sets of experiments. In the first set of experiments we investigate a
number of representative systems biology networks and then graph
the Rent plot (i.e., average of nodes per block versus the number of
external nets per block on a log-log scale). We also calculate the
Rent exponent and provide observations on the similarities and dif-
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Figure 7: Visualization of the dros network.

ferences between electronic circuits and systems biology networks.
In the second set of experiments we construct random graphs with
the same degree sequences as the real networks and then graph the
Rent plot and compute the rent exponent. We also discuss the dif-
ferences between such networks and the real networks. First we
describe the tools used in the experiments of this study.

e We construct a tool that calculates P and B of the Rent rule
based on the hypergraph partitioning tool hMETIS (version
1.5) [16].

e We use the tool gengraph [22] to generate random graphs
with the same number of edges and nodes and with the same
degree sequence as the experimental networks.

e We use the tool mDraw for network visualization [2].

The names of the networks used in our experiments together with
their characteristics are given in Table 1, where we provide the
number of edges, nodes and the average node degree of each net-
work. We use the mDraw tool to draw the dros network in Figure
7. The average node degree of electronic logic circuits is usually
around 3 —4 due to technology limitations on the number of fan-in
and fan-outs of nodes. The average node degree for most systems
biology networks (especially the ones that are similar to logic cir-
cuits) are within the range of logic circuits. However, some other
networks like neural networks require high connectivity which in-
creases the average node degree.

In addition to average node degrees, we consider the node degree
sequence. Figure 8 shows the degree sequence of a number of net-
works. We first notice that except for nodes with degree one, sys-
tems biology networks exhibit the general trend that as the degree
increases, the number of nodes with the degree decreases. How-
ever, circuits typically have few nodes (basically I/O terminals)
with degree one which is due to the limitedness of the perimeter
of the circuit. Networks from systems biology do not have neces-
sarily such limitation. The difference in the number of nodes with
degree one will impact the shape of Region II in the Rent plot. We
will shortly study the implications of the number of nodes with de-
gree one as part of the first experiment.

Exp 1: Experiments with Systems Biology Networks. In the first
set of experiments we asses the validity of Rent’s rule to networks
from systems biology. We use the recursive-partitioned based de-
veloped flow for calculating B (the average number of nodes per
block) and P (the average number of external nets per block) at
various partition levels. We plot our results for four networks in



Network || Description

| nodes | nets | av. degree

s838 an electronic circuit network 512 819 3.20
sea_urchin || a developmental transcription network from sea urchin 45 83 3.69
colil a transcription interactions between regulatory proteins and genes in the bacterium E. coli | 418 519 2.45
human a human signal transduction network 181 312 2.75
yeast an integrated transcription and protein interaction network in the yeast S. cerevisiae 685 1052 3.07
§9234 an electronic circuit network 5844 8197 2.81
dros a drosophila developmental transcription network in Drosophila fly 110 306 5.14
tong a transcription genetic interaction network of yeast 685 1052 3.07
c_elegans a neuronal synaptic circuitry network in the C. elegans worm 280 2170 15.50
ccsb a protein-protein interaction network 687 2608 7.59
dip a protein-protein interaction network for S. cerevisiae 4716 | 15114 6.41
Table 1: Characteristics of networks in experimental results.
Figure 9; other networks display similar trend. Our plots show that network || Rent Rzm diff
systems biology network display a clear linear Region I trend as rancom
the case for electronic circuits. Thus, we conclude that Rent’s rule s838 . 0367 | 0.671 0.304
. X . sea_urchin || 0.448 0.588 0.140
is generally applicable to networks from systems biology. colil 0463 | 0568 | 0.105
While Region I of the Rent graph is the region of interest in cal- human 0431 | 0.665 | 0.234
culating the Rent exponent, Region II is characteristic of computa- yeast 0.489 | 0.708 | 0.219
tional circuits as it shows the impact of the limited number of I/Os. $9234 0.500 | 0.777 | 0.277
One of the differences between Rent graphs for electronic circuits dros 0.601 | 0.721 | 0.120
. . .. . tong 0.621 | 0.775 | 0.154
and biological systems lies in Region II. In many of the plots of
R . R c_elegans 0.781 0.878 0.097
Figure 9, Region II does not clearly exist. There are a number of ccsb 0827 | 0858 | 0031
reasons for such behavior. dip 0827 | 0896 | 0.069

o Some of the experimented networks are actually subnetworks
that are extracted from larger cell networks. In many cases
cell networks are gigantic and researchers focus on only map-
ping subnetworks of an original network, and thus it is rea-
sonable to expect a large number of “I/O" terminals and con-
sequently the lack of Region II.

e The number of I/O signals for the cell are limited by the
surface area of its volume, and thus it has more capacity to
handle I/O than circuits that are constrained either by their
perimeter or their surface area (in case of flip-chip packag-
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Figure 8: Degree distribution (sequence) for four networks.
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Table 2: Rent exponent for the studied networks and the ran-
dom networks with the same degree sequence as their real
counterparts.

e For signal transconduction networks, the cell has the capa-
bility to transport multiple ion types through the same ion
channels effectively multiplexing its I/O and increasing its
communication capabilities.

To calculate the Rent exponents of all networks, we perform lin-
ear regression on our partitioning results. We tabulate the results
for various circuits in column 2 of Table 2. The results show that
the Rent exponent varies between 0.4 — 0.8 depending on the cir-
cuit’s type. Circuits with larger wiring complexity and higher aver-
age node degree (e.g., c_elegans, ccsb and dip) display higher Rent
exponents. Interestingly, transcription networks that function in a
manner similar to logic circuits have Rent exponents that are in the
0.4 — 0.6 range, which is similar to electronic logic circuits.

In electronic circuits, the correctness of Rent’s rule is a result
of the fact that designers build their designs in a hierarchical fash-
ion, imposing the same complexity at each level of the hierarchy
[21]. Such hierarchy leads to self-similarity of the designs [21, 7].
Given the presented results, one might wonder whether evolution
has eventually led to biological networks with such hierarchical or-
ganization.

Exp 2: Real Networks vs. Random Networks. In the second
set of experiments we study the applicability of Rent rule to ran-
dom networks that have the same degree sequence as real networks.
For each network in Table 1, we use the tool gengraph [22] to
generate a random network with the same (1) nodes, (2) edges,
and (3) degree sequence as its real counterpart. Then we use our
partitioning-based flow to calculate B and P at various partitioning
levels. We plot in Figure 10 the partitioning results for both the real
network and the random counterpart. In all cases the random net-
work has the upper plot (i.e., the one with larger Rent exponent).
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Figure 9: Rent plot for selected networks.

For space limitations, only a sample of networks are plotted; other
networks exhibit similar behavior. The plots show that Rent rule
is well applicable into random networks with the same degree se-
quence as the real networks. We also calculate the Rent exponent
for all networks and tabulate the results in the third column of Ta-
ble 2. From our results we observe that random networks display
Rent exponents with higher values than their real counterpart net-
works with the same degree distribution. In general the difference
between the Rent exponent of a real network and that of its random
network decreases in magnitude as the Rent exponent increases in
magnitude.

6. CONCLUSIONS

In this paper we have discussed the applicability of the structural
circuit analysis techniques to network arising in other contexts like
systems biology. Information processing networks in system biol-
ogy bear striking resemblance to their physically-engineered ones,
and thus it is natural to investigate whether circuit topological prop-
erties are also valid for them. We have investigated Rent rule as a
key property of electronic circuits. We have examined its applica-
bility to systems biology network and to also random graphs with
the same properties as their circuit counterparts (nodes, edges and
degree sequences). We have discovered that Rent’s rule is also well
applicable to systems biology network, and furthermore the Rent
exponent of biology networks that carry out logic-based informa-
tion processing fall within the same range as engineered electronic
circuits. Random networks with the same degree sequence as real
networks also obey Rent’s rule but consistently have higher Rent
exponent than their real counterparts.
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