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ABSTRACT
One of the popular design methodologies for power distri-
bution networks (PDNs) is to identify a target impedance
to be met across a broad frequency range. The methodol-
ogy is based on the assumption that the ratio of the time-
domain maximum output voltage noise to the multiplication
of target impedance and time-domain maximum input cur-
rent is no more than one. In this paper, the ratios for differ-
ent impedance profiles are analyzed, and the assumption is
proved to be not necessarily true. Particularly, for second-
order impedances, the maximum ratio can be two. Several
cases with real PDN structures are investigated to support
our analysis. A real case of the complete PDN path with
the ratio of 1.585 is given.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
VLSI

General Terms
Theory

Keywords
power distribution network, voltage noise, target impedance

1. INTRODUCTION
Design of power distribution networks (PDNs) becomes a

challenging task for nanoscale CMOS technology. As tech-
nology advances, supply voltage scales down to less than 1
volt [1]. This brings a tighter noise margin requirement for
the PDN. In addition, as circuit density increases, the cur-
rent density and the total amount of current grow rapidly,
causing large IR drops. At the same time, the faster switch-
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ing of transistors produces faster current transients. This
results in significant simultaneous switching noise (SSN).

The PDN design objective is to guarantee that the output
voltage noise is no larger than a specified value, say, 5% of
the nominal supply voltage. One of the most popular PDN
design methodologies is to define a target impedance and de-
sign the PDN so that its output impedance is no larger than
this target impedance over the whole operation frequency
range [9, 11, 12]. The target impedance is calculated as [11]

Ztarget =
(power supply voltage) × (allowed ripple)

current
, (1)

where current is the average current flowing through the
PDN. Let Vmax, Zmax (i.e., Ztarget), and Imax denote the
maximum magnitude of the worst-case PDN voltage noise
v(t), the maximum magnitude of the PDN output impedance
Z(ω), and the maximum magnitude of the time-domain in-
put current i(t), respectively, i.e.,

Vmax = max
t

|v(t)|,
Zmax = max

ω
|Z(ω)|,

Imax = max
t

|i(t)|.

The assumption behind Eqn. (1) is that Vmax is less than
Zmax times Imax, i.e., the ratio

γ = Vmax/(ZmaxImax) (2)

is no more than 1.
However, since the impedance is a frequency-domain met-

ric while the voltage noise and input current are measured in
time domain, such assumption based on Ohm’s law does not
necessarily hold. Actually, the ratio γ may be larger than
1. The frequency-domain design methodology may lead to
a PDN design with much larger power supply noise than ex-
pected. For instance, if the allowed noise of a PDN design is
5% of the nominal supply voltage and the ratio γ is 2, then
the real maximum noise of the designed PDN may be 10%
of the nominal supply voltage, which is not tolerable.

Several works have been done which are related to the
time-domain and the frequency-domain response of a linear
system [3, 4, 5, 7]. In [4], a method of generating the worst-
case PDN voltage noise based on the superposition of step
responses is proposed. The effect of pole and zero locations
on the locations and magnitudes of the extrema of the step
response of a linear system is studied in [7]. The influence
of zero locations on the number of extrema in the step re-
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sponse is investigated in [5, 3]. However, none of these works
provide a quantitative analysis on the relation between the
maximum worst-case PDN voltage noise and the peak value
of the frequency response magnitude.

The contributions of this paper are as follows. (1) The re-
lationship between the peak of the frequency-domain output
impedance and the maximum time-domain voltage noise is
analyzed for different impedance profiles. It is proved that
for second-order impedances, the maximum ratio γ can be
2. (2) Several cases with real PDN structures are studied to
support our analysis. The ratio of a complete PDN path is
shown to be 1.585.

The rest of the paper is organized as follows. The problem
formulation is given in section 2. The method of generating
the worst-case PDN voltage noise is introduced in section
3. In section 4, the ratios for the impedance profiles with
right-half-plane zeros are discussed. In section 5, first-order
and second-order impedances are analyzed under such con-
straints. Sections 6 studies real-case PDN structures. Fi-
nally, conclusions and future work are remarked in section
7.

2. PROBLEM FORMULATION
We would like to find out the maximum of the ratio γ.

Without loss of generality, Imax is set to be 1. Thus, the
problem formulation is described as

max γ = Vmax/Zmax (3)

s.t. Imax = 1 (4)

In the problem formulation above, the input current i(t)
is presumed to be no less than 0. The output impedance
Z(s) can be distinguished by two categories: Z(s) without
passive realizability constraints and Z(s) with passive real-
izability constraints. Usually a PDN is modeled by RLC
components, which is a passive network. However, if the
active voltage regulator module is included, Z(s) may not
be passive.

3. WORST-CASE PDN OUTPUT VOLTAGE
NOISE

We first need to generate the worst-case voltage noise of
the PDN in order to find the maximum γ. In [13], an in-
equality is given to show the relation between Vmax, Imax

and the impulse response of a system, i.e.,

Vmax ≤ Imax‖z(t)‖L1 , (5)

where z(t) is the impulse response of a system, and ‖z(t)‖L1

is the L1 norm of z(t), i.e., the step response of the system.
In our problem formulation, the input current i(t) is no less
than zero and the bound of i(t) is one. From the convolution
relation between the output and input of a system, i.e.,

V (t) =

∫ t

0

z(t − τ)i(τ) dτ, (6)

it can be seen that the worst-case voltage response can be
created by letting i(τ) be 1 when z(t − τ) is larger than 0
and by letting i(τ) be zero when z(t − τ) is less than zero.

In [4], Drabkin et al. proposed a method of creating the
worst-case PDN voltage noise. This method is based on the
superposition of step responses and it corresponds to the
worst-case generation method based on impulse response

discussed above. Let us assume the unit step response of
a PDN is vu(t). Note that the DC supply voltage is ignored,
as usually the case in PDN analysis. The idea is to over-
lay all the local maximums of vu(t) and its inverse −vu(t)
(i.e., the inverse of the local minimums of vu(t)) at the same
point. The resultant input pattern is the superposition of
many reverse time-shifted step inputs and inverse step in-
puts. The value “1” of the input covers the increasing period
of the step response and the value “0”of the input covers the
decreasing period of the step response. It can be proved that
the method proposed in [4] generates the worst-case output
voltage noise:

Theorem of Step Response Derivation. Assuming
the input current is no less than zero, the worst-case PDN
voltage noise is generated by the superposition of step re-
sponses. Let VM1, VM2, . . . , VMN denote the local maxi-
mums of vu(t) and Vm1 and Vm2, . . . , VmN denote the local
minimums of vu(t). According to [4], the maximum worst-
case voltage noise is derived as

Vmax = VM1 − Vm1 + . . . + VMN − VmN . (7)

The theorem above can be proved by observing that the
input current is no less than zero and the impulse response
is the derivative of the step response. The increasing of
the step response corresponds to the positive value of the
impulse response and vice versa.

4. IMPEDANCE WITHOUT REALIZABIL-
ITY CONSTRAINTS

This section analyzes the maximum ratios of the output
impedance Z(s) without the constraint that Z(s) is realiz-
able by passive components. This imposes no constraints
on the locations of the poles or zeros of Z(s). Although a
stable network cannot have RHP poles, it may include RHP
zeros if there is a feedback system. Therefore, we focus on
the impedances with left-half-plane (LHP) poles and RHP
zeros in this section.

Claim 1. If the poles of Z(s) are in the left half plane
while Z(s) has RHP zeros, there exists a case of Z(s) such
that γ = 2.405 under the step response derivation assump-
tion.

RHP zeros may cause undershoots in the step response.
According to the assumption of step response derivation,
each undershoot represents a local maximum and minimum
pair and contributes to the maximum worst-case output
voltage noise. If |Z(s)| keeps small over the whole frequency
range, γ can also be much larger than 1. For example, there
is a family of rational functions called all-pass Padé delay
functions which are used to approximate the delay unit
e−sT . The all-pass Padé delay function can be expressed
as [10]

Rn(s) = Qn(−sT )/Qn(sT ), (8)

where

Qn(sT ) =

n∑
j=0

(n + j)!

j!(n − j)!
(sT )n−j . (9)

One of the properties of all-pass Padé delay functions is that
their magnitudes are 1 for all the frequencies. However, the
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step response of an all-pass Padé delay function displays a
very narrow undershoot of height about equal to its final
value. Take the second-order all-pass Padé delay function
for example where n = 2 and T = 1 in Eqn. (8), then Z(s)
is expressed as

Z(s) =
s2 − 6s + 12

s2 + 6s + 12
. (10)

Its step response can be calculated as

vu(t) = 1 − 4
√

3e−3t sin
√

3t. (11)

Eqn. (11) is plotted in Fig. 1, from which we can see that
the envelope of the sinusoidal waveform displays a large un-
dershoot.
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Figure 1: Step response of a second-order all-pass
Padé delay function.

We first calculate the values of all the local extrema in the
step response. By setting the derivative of Eqn. (11) to be
0 and solving the equation, we have the time points of the
local extrema as

tk = (1/6 + k)π/
√

3, k = 0, 1, 2, . . . . (12)

Consequently, the values of these extrema are

Vek = 1 − 2
√

3e−
√

3(1/6+k)π(−1)k, k = 0, 1, 2, . . . . (13)

Then we can calculate the maximum worst-case output volt-
age noise by using Eqn. (7), i.e.,

Vmax = 1 + 2
√

3 lim
k→∞

e−
√

3(1/6+k)π

≈ 2.405 (14)

Since |Z(s)| is 1 over the whole frequency range, the ratio is

γ ≈ 2.405. (15)

5. IMPEDANCE WITH REALIZABILITY
CONSTRAINTS

In this section, the maximum ratios of Z(s) under the
constraints that Z(s) can be realized by passive networks
are discussed. A function Z(s) is passive realizable as an
impedance if and only if it is a rational positive real function
of s. A function F (s) is positive real (p.r.) if the following
conditions are satisfied [8]:

(1) Z(s) is real for real s and is a ratio of polynomials in
s.

(2) Re[Z(jω)] ≥ 0 for all ω.

(3) All the poles of Z(s) are in the left half plane, with any
poles on the imaginary axis being simple and having
positive residues.

In the following sub-sections, the ratios for first-order and
second-order Z(s) with the passive realizability constraints
are discussed respectively.

5.1 First-order Impedance

Theorem 1. For first-order Z(s) of a passive network, γ
is always 1.

Proof. A first-order Z(s) can be represented as

Z(s) =
k

s − p
, (16)

or

Z(s) =
s − z

s − p
, (17)

where k is a constant, z and p are the zero and the pole
respectively. To satisfy the realizability constraints, k ≥ 0,
z ≤ 0 and p ≤ 0.

(a) For Z(s) expressed by Eqn. (16), the magnitude of
Z(s) with frequency can be expressed as

|Z(ω)| = k

√
1

ω2 + p2
. (18)

Its step response is represented as

vu(t) = −k

p
(1 − ept)u(t). (19)

Since p ≤ 0, vu(t) increases with t while |Z(ω)| decreases
with ω. We can find that Vmax = Zmax = −k/p.

(b) For Z(s) expressed by Eqn. (17),the magnitude of Z(s)
with frequency can be expressed as

|Z(ω)| =

√
1 +

z2 − p2

ω2 + p2
, (20)

and its step response is represented as

vu(t) =

[
z

p
+ (1 − z

p
)ept

]
u(t). (21)

Similarly, we can see that |Z(ω)| and vu(t) both increase
or decrease monotonically with ω and t respectively. The
maximum of |Z(ω)| and the maximum of vu(t) are both
equal to the larger one of 1 and z/p, i.e., Vmax = Zmax =
max(1, z/p).

In summary, Vmax = Zmax for both cases. Thus, the ratio

γ = 1. (22)

5.2 Second-order Impedance
Under passive realizability constraints, all the poles and

zeros are in the left half plane, and the highest or lowest
powers of the numerator and denominator polynomials may
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differ at most by 1 [8]. Thus, a second-order Z(s) can be
represented as

Z(s) =
s − z1

(s − p1)(s − p2)
, (23)

where the poles p1, p2 can be real values or complex conju-
gate pairs while the zero z1 can only be real, or

Z(s) =
(s − z1)(s − z2)

(s − p1)(s − p2)
, (24)

where the zeros z1, z2 and the poles p1, p2 can be real val-
ues or complex conjugate pairs. The real parts of z1,2 and
p1,2 are no larger than 0 in order to satisfy the realizability
constraints, i.e., Re[z1,2] ≤ 0 and Re[p1,2] ≤ 0.

For second-order Z(s) with only one zero, i.e., Z(s) ex-
pressed in Eqn. (23), we directly give the following claim:

Claim 2. For second-order Z(s) with only one zero, there
exists a case where γ = 1.062 under passive realizability con-
straints. Empirically, for sufficiently large ranges of param-
eters z1, p1 and p2, γ is no more than 1.062.

The result in Claim 2 is obtained by solving a nonlinear
programming problem which is similar with the following
analysis for second-order Z(s) with complex poles.

In this section, we focus on second-order Z(s) with two
zeros, i.e., Z(s) represented in Eqn. (24). We distinguish
four categories according to the positions of zeros and poles
in the s plane: (1) both the poles and the zeros are real;
(2) the poles are real while the zeros are complex conjugate
pairs; (3) the poles are complex conjugate pairs while the
zeros are real; (4) both the poles and the zeros are complex
conjugate pairs. The maximum ratios for each category are
investigated respectively.

5.2.1 Real Poles and Real Zeros

Claim 3. For second-order Z(s) with two real poles and
two real zeros, there exists a class of cases where the ratio
γ can be arbitrarily close to 2 under the passive realizabil-
ity constraints. Empirically, for sufficiently large ranges of
parameters z1, z2, p1 and p2, γ is no more than 2.

For two real poles and two real zeros, the step response of
Z(s) can be represented as

vu(t) = K1 + K2e
p1t + K3e

p2t, (25)

where

K1 =
z1z2

p1p2
,

K2 =
(p1 − z1)(p1 − z2)

p1(p1 − p2)
,

K3 =
(p2 − z1)(p2 − z2)

p2(p2 − p1)
.

By setting the derivative of Eqn. (25) to be 0 and solving
t, we can find that vu(t) has a local extremum at the time
point

t0 =
1

p1 − p2
ln

[
(p2 − z1)(p2 − z2)

(p1 − z1)(p1 − z2)

]
(26)

as long as t0 is real and larger than 0.
Firstly let us assume z1z2 = p1p2 and |p1| ≤ |z1| ≤ |z2| ≤

|p2|. Then we have |Z(0)| = 1 and |Z(∞)| = 1. According
to the relative positions of the poles and zeros we have

Zmax = 1. (27)

We also find that the step response vu(t) always has a local
minimum for this case. Using Eqn. (7), we can calculate the
maximum worst-case voltage noise as

Vmax = vu(0) − vu(t0) + vu(∞), (28)

where vu(0), vu(t0) and vu(∞) can be obtained from Eqn. (25).
Since the zeros and the poles are all real, we let z1 = kp1 and
p2 = mp1, where 1 ≤ k ≤ √

p2/p1 and m ≥ 1. According to
Eqn. (27) and Eqn. (28), for a fixed m, the ratio γ reaches

its maximum when k =
√

p2/p1. By setting k =
√

p2/p1, γ
can be represented solely by m as

γ = 1 +
(
√

m − 1)2

1 − m
(m

m
1−m − m

1
1−m ). (29)

From its derivative we can see that the right hand side of
Eqn. (29) is an increasing function on m for m ≥ 1 and its
limit is 2 as m goes to infinity, i.e.,

max γ = 2. (30)

For general cases, the parameter space of z1, z2, p1, and
p2 is searched for sufficiently large ranges. We first fix the
value of p1 and p2, and sweep z1 and z2. For each (p1, p2)
pair, a local maximum γ is identified. The local maximum
γ for different p1 and p2 values is shown in Fig. 2. From
Fig. 2, we can see that the maximum γ is no larger than 2.
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Figure 2: Maximum ratio of second-order Z(s) with
real poles and zeros.

The cases where γ ≈ 2 can be realized by passive net-
works. For example, let p1 = −1, p2 = −10000, and z1 =
z2 = −100, an RLC circuit can be synthesized as shown in
Fig. 3. For this case, γ is 1.978, which is close to 2.

(1/9801)H (200/9801)Ω

(9801/1000)F 1Ω i(t)

Figure 3: Synthesized passive circuit for maximum
ratio with real poles and real zeros.

5.2.2 Real Poles and Complex Zeros

Claim 4. For second-order Z(s) with real poles and com-
plex zeros, there exists a class of cases where the ratio γ can
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be arbitrarily close to 2 under the passive realizability con-
straints. Empirically, for sufficiently large ranges of param-
eters z1, z2, p1 and p2, γ is less than 2.

For complex zeros, let z1,2 = a ± bj, where a ≤ 0 and
b > 0. The coefficients K1, K2, K3 in the step response
expressed by Eqn. (25) then become

K1 =
a2 + b2

p1p2
,

K2 =
p2
1 − 2ap1 + a2 + b2

p1(p1 − p2)
,

K3 =
p2
2 − 2ap2 + a2 + b2

p2(p2 − p1)
.

The step response vu(t) has a local extremum at the time
point

t0 =
1

p1 − p2
ln

[
p2
2 − 2ap2 + a2 + b2

p2
1 − 2ap1 + a2 + b2

]
(31)

as long as t0 is real and larger than 0.
Similarly, we first assume a2 + b2 = p1p2. According to

the relative positions of the poles and zeros we find that

Zmax = 1. (32)

The step response vu(t) always has a local minimum for this
case and Vmax can also be calculated by Eqn. (28). Let
p2 = mp1, where m ≥ 1 (assume |p1| ≤ |p2|), then for fixed
m, the ratio γ reaches its maximum when a = 0. Thus, by
setting a = 0, we represent γ solely by m as

γ = 1 +
m + 1

1 − m
(m

m
1−m − m

1
1−m ). (33)

The right hand side of Eqn. (33) is an increasing function
on m for m ≥ 1and its limit is 2 as m goes to infinity, i.e.,

max γ = 2. (34)

As in section 5.2.1, we then search the parameter space
of a, b, p1, and p2 for sufficiently large ranges. The local
maximum γ for different p1 and p2 values is shown in Fig. 4,
from which we can see that the maximum γ is no larger than
2.
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Figure 4: Maximum ratio of second-order Z(s) with
real poles and complex zeros.

5.2.3 Complex Poles and Real Zeros

Claim 5. For second-order Z(s) with complex poles and
two real zeros, there exists a case where γ = 1.047 under
passive realizability constraints. Empirically, for sufficiently
large ranges of parameters, γ ≤ 1.047.

Let the complex poles p1,2 = α ± βj, where α ≤ 0 and
β > 0. A nonlinear programming problem can be formulated
to solve the maximum γ:

max γ = Vmax(z1,z2,α,β)
Zmax(z1,z2,α,β)

(35)

s.t. z1 ≤ 0
z2 ≤ 0
α ≤ 0
β > 0 (36)

Sequential quadratic programming (SQP) method [2] is used
to solve this problem. This method solves constrained opti-
mization problems in a similar way as Newton’s method for
unconstrained optimization. It uses a quasi-Newton method
to generate an approximation from the Hessian of the La-
grangian function at each iteration. Then the approximation
is used to generate a quadratic programming (QP) subprob-
lem whose solution is used to form a search direction for a
line search procedure. The solved maximum γ is

max γ = 1.047. (37)

And the parameter values for the maximum γ are z1 =
−7.02 × 106, z2 = −8.38 × 105, α = −2.89 × 105, and
β = 2.89 × 105.

The local maximum γ for different z1 and z2 is shown in
Fig. 5. From the figure we can also see that the maximum
γ is around 1.047.

−10
−8

−6
−4

−2
0

x 108

−10

−5

0

x 108

0.8

0.85

0.9

0.95

1

1.05

z
1

z
2

γ

Figure 5: Maximum ratio of second-order Z(s) with
complex poles and real zeros.

5.2.4 Complex Poles and Zeros

Claim 6. For second-order Z(s) with complex poles and
complex zeros, there exists a case where γ = 1.815 under
passive realizability constraints. Empirically, for sufficiently
large ranges of parameters γ ≤ 1.815.

As in the previous cases, let p1,2 = α±βj and z1,2 = a±bj,
and the problem formulation can be written as

max γ = Vmax(a,b,α,β)
Zmax(a,b,α,β)

(38)

s.t. a ≤ 0
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b > 0
α ≤ 0
β > 0 (39)

By solving this nonlinear programming problem using SQP,
we find that the maximum γ is

max γ = 1.815. (40)

The parameter values for the maximum γ are a = −1.43 ×
107, b = 5.88 × 107, α = −2.03 × 107, and β = 2.03 × 107.

The local maximum γ for different a and b is shown in
Fig. 6. From the figure we can also see that the maximum
γ is around 1.815.
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Figure 6: Maximum ratio of second-order Z(s) with
complex poles and complex zeros.

6. REAL-CASE POWER DISTRIBUTION
NETWORKS

In this section, the maximum ratios for real-case PDN
structures are analyzed. Two standard LC tanks are first
considered. One is that without the equivalent series resis-
tance of the capacitor (ESRC). The other has an ESRC

with the capacitor. After that, a complete PDN path is
discussed.

6.1 Standard LC Tank Without ESRC

Fig. 7 shows a standard LC tank. R and L are to model
the parasitic resistance and inductance of the PDN inter-
connects. C is to model the decoupling capacitors. In this
case, C is considered ideal without ESRC .

L R

C i(t)

Figure 7: Standard LC tank without ESRC .

Theorem 2. For the LC tank as in Fig. 7, the maximum
ratio γ is 1.041.

Proof. The output impedance of the LC tank can be
represented as

Z(s) =
sL + R

s2LC + sRC + 1
. (41)

Let λ = R2C/L. According to the properties of Z(s), the
circuit can be analyzed under the following three categories.

(a) λ ≥ 4
For this category, Z(s) has real poles and decreases mono-

tonically with frequency. As in section 4.1, we can derive
that Zmax = R and Vmax = R. Thus, the ratio is

γ = 1. (42)

(b) 1 +
√

2 < λ < 4
For this category, Z(s) has complex poles and decreases

monotonically with frequency. Thus, Zmax = R. As in
section 4.2, the maximum worst-case voltage noise can be
calculated and the ratio is

γ = 1 +

√
1

λ

e
1
σ

tan−1 (σ)

1 − e
π
σ

, (43)

where σ = −√
4/λ − 1.

(c) λ ≤ 1 +
√

2
For this category, Z(s) has complex poles and one local

maximum. Though tedious, the ratio can be obtained as

γ =

√
2
√

2λ3 + λ2 − (λ2 + 2λ)(1 +

√
1

λ

e
1
σ

tan−1 (σ)

1 − e
π
σ

). (44)

From Eqn. (42)∼Eqn. (44), we can obtain that when λ ≈
2.12 the maximum ratio

max γ ≈ 1.041. (45)

The ratio γ as a function of λ is plotted in Fig. 8.
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Figure 8: The ratio λ of the LC tank without ESRC .

6.2 Standard LC Tank With ESRC

In this sub-section, a resistor is added in series with C to
consider the effect of ESRC , as shown in Fig. 9.

L R

C

ESR
i(t)

Figure 9: Standard LC tank with ESRC .

Claim 7. For the LC tank as in Fig. 9, there exists a
case where γ = 1.5. Empirically, for certain ranges of the
circuit parameters γ ≤ 1.5.
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A nonlinear programming problem can be formulated as

max γ = Vmax(L,C,R,ESRC)
Zmax(L,C,R,ESRC)

(46)

s.t. 10−10 ≤ L ≤ 10−6

10−10 ≤ C ≤ 10−6

10−3 ≤ R ≤ 1
10−3 ≤ ESRC ≤ 1. (47)

The constraints of those parameters are chosen according
to the reasonable value ranges of the PDN parameters [11].
This nonlinear programming problem is solved by using SQP
method and the maximum ratio is found to be

max γ ≈ 1.5. (48)

The parameter values for the maximum γ are L = 0.1 nH,
C = 1 μF , R = 0.52Ω, and ESRC = 0.52Ω.

6.3 Complete PDN Path
In this sub-section, a real PDN case is discussed as in

Fig. 10. It is a complete PDN path including VRM, board,
package, on-chip power distribution, and decoupling capac-
itors [6]. The on-chip power grid model is lumped with the
package model.

VRM Board Decap Package & Chip

DC i(t)

Figure 10: Complete PDN path.
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Figure 11: Output impedance of the complete PDN
path.

The output impedance of the PDN is shown in Fig. 11.
The output impedance displays mainly 2 anti-resonance peaks
around 30 KHz and 160 MHz. The maximum magnitude
of the impedance is

Zmax = 0.232. (49)

Those anti-resonance peaks cause low-frequency and high-
frequency fluctuations in the PDN step response. By catch-
ing the maximums and minimums of the step response and
applying Eqn. (7), we can calculate the maximum worst-case
voltage noise as

Vmax = 0.368. (50)

Thus, the maximum γ for this PDN case is

γ = 1.585. (51)

The worst-case voltage noise of the PDN is displayed in
Fig. 12. The corresponding input pattern is plotted in Fig. 13,
where the small sub-figure zooms in on the high-frequency
transition of the input.
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Figure 12: Worst-case voltage noise of the complete
PDN path.
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of the complete PDN path.

7. CONCLUSIONS AND FUTURE WORK
In this paper, the ratio of the maximum PDN output volt-

age noise to the maximum output impedance is analyzed.
For second-order Z(s) the maximum γ is found to be 2. A
real case of a complete PDN path is given where γ is 1.585.
The analysis results contradict the assumption of the well-
known “target impedance” design methodology. From the
results it can be seen that making output impedance below
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the target impedance does not necessarily guarantee a good
PDN design.

The future work includes: (1) theoretical analysis of the
ratio for the impedances with orders larger than 2, and (2)
implementation of a new methodology for PDN design con-
sidering both target impedance and the ratio.
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